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1 Introduction

This paper proposes a new syntax and proof system called Dualized Intuitionistic Logic (DIL),
for intuitionistic propositional logic with the subtraction operator. Our goal is a conservative
extension of standard propositional intuitionistic logic with perfect duality (symmetry) between
positive and negative connectives. The proof system should satisfy the following metatheoretic
properties: soundness, completeness, cut elimination, and substitution. To our knowledge, no
existing system achieves these goals. Substitution is needed for cut elimination, but has posed
problems for other systems; for example Crolard develops a complex dependency-tracking calculus
to obtain substitution for a constructive type theory with subtraction [3].

In this extended abstract, we describe our work in progress on DIL. We have formulated a dualized
syntax and proof system, for which we have proved soundness with respect to a standard Kripke
semantics for intuitionistic propositional logic. We have also proved substitution. Regarding com-
pleteness, we point out an issue in prior work: we exhibit a semantically valid formula which is
provable in DIL but which lacks, under the obvious translation, a cut-free proof in the system
SLK1 of Crolard [2]. This shows that Crolard’s system cannot satisfy both cut elimination and
completeness.

Our motivation is to obtain a new logical foundation for type theory, with a perfect duality between
positive and negative computation. Computational classical type theories (CCTTs) like those
proposed in [9] and [4] exhibit such a duality, but are not suitable for computation since they,
like other CCTTs, lack the canonicity property: closed terms of type T are not necessarily built
with a constructor for T (e.g., pairing for T ∧ T ′). For other work seeking to support control
and canonicity, see [5] and works cited there. Like some CCTTs, DIL is formulated as a sequent
calculus. In future work, we intend to use the Curry-Howard isomorphism to develop a Dualized
Type Theory based on DIL, where positive assumptions will become input variables and negative
ones output variables. Cut will become a control operator much like the µ-operator of Curien and
Herbelin’s system [4]. We thus propose to explore intuitionistic duality as a basis for constructive
control, in contrast to (non-constructive) CCTTs.

But the main benefit we are seeking from a completely dualized system is a uniform simultaneous
treatment of induction and coinduction. It is well known that induction and coinduction are duals
semantically. While this duality has been considered in CCTT [7], no constructive system with
induction and coinduction as duals has yet been proposed. Proof assistants like Coq and Agda
have unsatisfactory treatments of (mixed) induction and coinduction (see the discussion in [1]):
Coq lacks type preservation in the presence of coinductive types, a serious defect in the system,
while Agda restricts how inductive and coinductive types can be nested. Our working hypothesis
is that a logical foundation based on intuitionistic duality will allow the semantic duality between
induction and coinduction to be expressed in type theory, yielding a solution to the problems with
these important features in existing systems. Detailed proofs of all lemmas and theorems below
may be found in a companion document on the first author’s web site.
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2 Syntax of Dualized Intuitionistic Logic (DIL)

polarities p ::= + | −
formulas T ::= A | 〈p〉 | T →p T ′ | T ∧p T ′

Figure 1: Syntax of formulas for DIL

The syntax for polarities p and then formulas T of Dualized Intuitionistic Logic (DIL) is given in
Figure 1. We write p̄ for the opposite polarity from p (so +̄ = − and −̄ = +). The formulas A are
drawn from a set A of atomic propositional formulas. As the semantics below will make precise,
the logical constructs above can be identified with standard ones as follows: 〈+〉 is True, 〈−〉 is
False, T ∧+ T ′ is T ∧ T ′, T ∧− T ′ is T ∨ T ′, T →+ T ′ is T → T ′, and T →− T ′ is subtraction
T ′ − T ′ (note the reversed order of subformulas).

3 Kripke Semantics for DIL

We will work with standard Kripke models (W,�, V ) (cf. Chapter 7 of [8]), where W is a non-
empty set of objects called worlds, � is a preorder on W called the accessibility relation, and V
maps each world w in W to a subset of A, namely the atomic formulas which are true in w. As
standard, V is required to be monotonic: for all w ∈W and A ∈ A, if A ∈ V (w), then A ∈ V (w′)
for all w′ � w. Figure 2 defines a semantics JT Kw relative to a Kripke model (W,�, V ), to interpret
a formula T in a world w ∈W . The semantics exactly follows standard semantics for intuitionistic
propositional logic with subtraction (cf. [6]).

Theorem 1 (Monotonicity). Suppose w �p w′. Then pJT Kw implies pJT Kw′ .

Proof. If p = +, then the theorem is the usual statement of monotonicity, which we will prove in
a moment. If p = −, then the theorem says that if w � w′, then ¬JT Kw, implies ¬JT Kw′ . But this
is equivalent to saying that if w′ � w, then JT Kw′ implies JtKw, which follows from the statement
of the theorem when p = −.

So suppose p = +. The proof is now by induction on T . The cases for 〈+〉 and 〈−〉 are trivial,
and the cases for T1 ∧+ T2 and T1 ∧− T2 follow directly by the induction hypothesis. So suppose
T ≡ T1 →+ T2, and suppose JT Kw and w � w′. To show the required JT1 →+ T2Kw′ , it suffices
by the definition of the semantics to assume an arbitrary w′′ ∈ W with w′ � w′′ and JT1Kw′′ . We
must then show JT2Kw′′ . By transitivity of �, we have w � w′′. Unfolding the definition of the
semantics, the assumed JT1 →+ T2Kw becomes:

∀w′. w � w′ ⇒ JT1Kw′ ⇒ JT2Kw′′

We can instantiate this with w′′, w � w′′, and JT1Kw′′ to obtain the desired JT2Kw′′ .

JAKw ⇔ A ∈ V (w)
J〈+〉Kw ⇔ true
J〈−〉Kw ⇔ false
JT →+ T ′Kw ⇔ ∀w′.w � w′ ⇒ JT Kw′ ⇒ JT ′Kw′

JT →− T ′Kw ⇔ ∃w′.w � w′ ∧ ¬JT Kw′ ∧ JT ′Kw′

JT ∧+ T ′Kw ⇔ JT Kw ∧ JT ′Kw
JT ∧− T ′Kw ⇔ JT Kw ∨ JT ′Kw

Figure 2: Semantics of DIL formulas
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local contexts ∆ ::= · | pT ,∆
modal contexts Γ ::= ∆ | Γ �p ∆

Figure 3: Logical contexts for DIL

For the last case, suppose T ≡ T1 →− T2, and w � w′. Unfolding the definition of the semantics,
our assumption JT1 →− T2Kw is equivalent to:

∃w′′. w � w′′ ∧ ¬JT1Kw′′ ∧ JT2Kw′′

So assume an arbitrary such w′′ satisfying the displayed conjuncts. We must now prove JT1 →−
T2Kw′ , which is equivalent to:

∃w′′. w′ � w′′ ∧ ¬JT1Kw′′ ∧ JT2Kw′′

Take w′′ for this w′′. The second two conjuncts are satisfied by our current assumptions, and the
first, w′ � w′′, holds by transitivity of � from the assumed facts w′ � w � w′′.

Relational notation. We write �p to indicate � if p = +, and � if p = −.

Paths. We define a bi-directional path π of a Kripke model to be a possibly empty list of worlds
w1, · · · , wn such that for all i ∈ {1, . . . , n− 1}, we have either wi � wi+1 or wi � wi+1. For such a
path, we denote its length (n) by |π|. We will write π �p w to mean that π = π′, w′ for some π′

and w′, with w′ �p w. We do not distinguish a singleton path w from the world w.

4 A Proof System for DIL

In this section we define a proof system for DIL, which we will subsequently justify using the
modal semantics defined above. The derivable objects of the proof system are sequents of the form
Γ `p T , where Γ is a modal context as defined in Figure 3.

4.1 Contexts

Intuitively, a local context ∆ describes a world, while a modal context describes a (bi-directional)
path. The starting point of the path corresponds to the leftmost local context in the modal context.
We treat pT as an abbreviation for local context pT , ·. We sometimes also view contexts as built
from right to left instead of left to right. We concatenate local contexts with ∆,∆′, and modal
contexts with Γ �p Γ′. We do not distinguish a modal context of the form ∆ from the local
context ∆. The local extension Γ,∆ of modal context Γ by local context ∆ is defined as follows:

(Γ′ �p ∆′),∆ = Γ �p (∆′,∆)

The local concatenation Γ,Γ′ of modal contexts Γ and Γ′ is then defined by:

Γ, (∆ �p Γ′′) = (Γ,∆) �p Γ′′

When Γ = ∆ or Γ = Γ′ �p ∆, we call ∆ the current local context of Γ. It describes the abstract
world w at the end of the abstract path described by Γ. We sometimes refer informally to that w
as the current local world of Γ. The length |Γ| of modal context Γ is the number of maximal local
contexts contained in Γ; so, 1 plus the number of occurrences of �+ or �−. The use of an ordering
in the context may also be found in the display calculus δBiInt of Goré [6].
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Γ �p′ ∆1, pT ,∆2 `p T
ax

Γ `p T

Γ �p ∆ `p T
weak

Γ `p 〈p〉
unit

Γ �p pT `p T ′

Γ `p T →p T ′
imp

Γ `p̄ T
Γ `p T ′

Γ `p T →p̄ T ′
impBar

Γ `p T1

Γ `p T2

Γ `p T1 ∧p T2
and

Γ `p T1

Γ `p T1 ∧p̄ T2
andBar1

Γ `p T2

Γ `p T1 ∧p̄ T2
andBar2

Γ, p̄T `p T ′

Γ, p̄T `p̄ T ′

Γ `p T
cut

Figure 4: Proof Rules for DIL

JpT ,∆Kw = p JT Kw ∧ J∆Kw
J·Kw = true

J∆Kπ,w = J∆Kw
JT Kπ,w = JT Kw

JΓ �p ∆Kπ,w = JΓKπ ∧ π �p w ∧ J∆Kw

JΓ `p T Kπ = JΓKπ ⇒ pJT Kπ

Figure 5: Semantics of Local Contexts and Sequents

4.2 Proof system

Let us write p F as meta-notation meaning F if p ≡ + and ¬F if p ≡ −. The intuitive meaning
of the sequents, which we will make precise in the next section, is: Γ `+ T iff in the world w
at the end of the path determined by Γ, pJT Kw holds. The crucial idea of the proof system is to
incorporate Theorem 1 (Monotonicity), in the weak rule: if we are following edges forward in the
accessibility relation, then true formulas will remain true; and dually, if we follow edges backwards,
false formulas will remain false.

Figure 4 gives the proof rules for deriving sequents Γ `p T . The rules allow expansion of the
context in two different ways. If we expand the context locally, as in the cut rule, we are adding
a new assumption about the current world. If we expand the context modally, as in the imp rule,
we are extending our path π to a new world w′ where π �p w′, and the assumed formula holds.

5 Semantics and Metatheory for DIL

For purposes of this section, fix an arbitrary Kripke model (W,�, V ). Figure 5 defines a semantics
for sequents, after first defining several helper predicates: J∆Kw expresses that world w satisfies
local context ∆; J∆Kπ expresses that the last world in the path π satisfies ∆; and JΓKπ expresses
that path π satisfies modal context Γ. The interpretation JΓ `p T Kπ of sequents with respect to a
path π is then defined using those predicates: Γ `p T holds along path π iff assuming π satisfies
Γ, then T holds in the last world of π.

Lemma 2 (Local context concatenation). J∆′,∆Kw ⇔ J∆′Kw ∧ J∆Kw
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Proof. The proof is by induction on ∆′. For the base case, we have:

J∆′,∆Kw ⇔
J∆Kw ⇔
true ∧ J∆Kw ⇔
J∆′Kw ∧ J∆Kw

For the step case, suppose ∆′ = pT ,∆′′. Then we have:

J∆′,∆Kw ⇔
JpT ,∆′′,∆Kw ⇔
pJT Kw ∧ J∆′′,∆Kw ⇔
pJT Kw ∧ J∆′′Kw ∧ J∆Kw ⇔
JpT ,∆′′Kw ∧ J∆Kw ⇔
J∆′Kw ∧ J∆Kw

Theorem 3 (Soundness). If Γa `p Ta is derivable using the rules of Figure 4, and if π is a path
where |π| = |Γa| (the lengths of the path and the context are the same), then JΓa `p TaKπ.

Proof. The proof is by induction on the assumed derivation. Since the lengths of the path and the
context are the same, and since contexts always have length at least one (since at a minimum, they
consist of the empty local context), we will assume below that π = π′, w for some π′ and w.

Case:

Γ �p′ ∆1, pT ,∆2 `p T
ax

Assume JΓ �p′
∆1, pT ,∆2Kπ′,w. By the definition of the semantics of modal contexts (Figure 5),

this assumption implies J∆1, pT ,∆2Kw. Now we can apply Lemma 2 twice (once to conclude
J∆1, pT Kw and once more to conclude JpT Kw) to conclude the required pJT Kw.

Case:
Γ `p T

Γ �p ∆ `p T
weak

To prove the interpretation of the conclusion, first assume JΓ �p ∆Kπ′,w. By the definition of the
semantics of modal contexts, this implies:

� JΓKπ′

� π′ �p w

� J∆Kw

From the IH and the first of the displayed facts, we conclude pJT Kπ′ . Since |π′| = |Γ|, we know
π′ = π′′, w′ for some π′′ and w′, where pJT Kw′ . The second of the displayed facts then implies that
w′ �p w. We deduce by Theorem 1 (Monotonicity) that pJT Kw. This implies pJT Kπ as required.

Case:

Γ `p 〈p〉
unit

We must assume JΓKπ, and prove pJ〈p〉K. If p = +, the latter is equivalent to true. If p = −, it is
equivalent to ¬false. In either case, the interpretation of the conclusion holds.
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Case:
Γ �p pT `p T ′

Γ `p T →p T ′
imp

Assume JΓKπ′,w. We now case split on p. If p = +, then we must prove JT →+ T ′Kw. For this,
it suffices to assume arbitrary w′ with w � w′ and JT Kw′ , and prove JT ′Kw′ . By the IH, we may
conclude that JΓ �+ +T Kπ,w′ implies the required JT ′Kw′ . By the definition of the semantics of
modal contexts, we know that JΓ �p pT Kπ,w′ is equivalent to the conjunction of:

� JΓKπ

� π � w′

� J+T Kw′

But all the displayed facts hold in this case: we are assuming JΓKπ; π � w′ follows because π = π′, w
and w � w′; and we are assuming JT Kw′ .

Suppose now that p = −. So we must prove ¬JT →− T ′Kw. By the semantics of formulas
(Figure 2), this is equivalent to

¬(∃w′. w′ � w ∧ ¬JT Kw′ ∧ JT ′Kw′

By standard logical equivalences, this is equivalent to

∀w′. w′ � w ⇒ ¬JT Kw′ ⇒ ¬JT ′Kw′

Some assume w′ with w′ � w and ¬JT Kw′ . By the IH, we may conclude that JΓ �− −T Kπ,w′

implies the required ¬JT ′Kw′ . As above, we reason that JΓ �− −T Kπ,w′ is equivalent to the
conjunction of:

� JΓKπ

� π �− w′

� J−T Kw′

As in the case where p = +, we have all these facts. We are assuming JΓKπ and ¬JT Kw′ . We have
π �− w′ because π = π′, w and w � w′.

Case:
Γ `p̄ T
Γ `p T ′

Γ `p T →p̄ T ′
impBar

Assume JΓKπ,w. Now we case split on p. If p = +, then our goal is to conclude JT →− T ′Kw. By
the definition of the semantics of formulas, we must exhibit some w′ � w such that ¬JT Kw′ and
JT ′Kw′ . By reflexivity of �, we may take w for w′. We then have the required facts for this choice
of w′ by the IH. Now suppose p = −. We must prove ¬JT →+ T ′Kw. For this, it suffices to exhibit
some w′ � w with JT Kw′ and ¬JT ′Kw′ . Again, we may take w for w′, and we then have these facts
by the IH.

Case:
Γ `p T1

Γ `p T2

Γ `p T1 ∧p T2
and

This case follows easily by the IH, using the semantics of formulas and case-splitting on whether
p = + or p = −. The cases for andBar1 and andBar2 are similar, so we omit them.
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Case:
Γ, p̄T `p T ′

Γ, p̄T `p̄ T ′

Γ `p T
cut

Assume JΓKπ′,w. Let us case split on whether or not pJT Kw. If it does, then we are done. If not,
we have JΓ, p̄T Kπ, by the following argument. If Γ = ∆ for some ∆, then we have J∆, p̄T Kπ′,w by

Lemma 2, since we have J∆Kπ′,w and p̄JT Kw. Similarly, if Γ = Γ′ �p′
∆ for some Γ′, p′, and ∆,

then we must show JΓ′ �p′
(∆, p̄T )Kπ′,w. For this, it suffices by the definition of the semantics of

modal contexts to show:

� JΓ′Kπ′

� π′ �p′ w

� J∆, p̄T Kw

The first two of these follow directly from our assumption JΓ′ �p′
∆Kπ′,w. The last follows as in

the case where Γ = ∆.

Now that we know JΓ, p̄T Kπ, we can conclude both pJT ′Kπ and p̄JT ′Kπ by the IH. These are
contradictory, showing that p̄JT Kw is impossible.

Lemma 4 (Local weakening). The following rule is admissible:

Γ1,Γ2 `p T

Γ1,∆,Γ2 `p T
localWeak

Proof. The proof is by induction on the structure of the assumed derivation.

Case:

Γ �p′ ∆1, pT ,∆2 `p T
ax

We need to show that Γ1,∆
′,Γ2 `p T . We know

Γ1,Γ2 = Γ �p ∆1, pT ,∆2 (1)

We will do a case split on the form of Γ2. Let us consider the case when Γ2 is a local context, say
∆′2. This implies that Γ1 must contain �p in order for the equality (1) to hold. This implies that
Γ1 = Γ �p ∆′1, where

∆′1,∆
′
2 = ∆1, pT ,∆2 (2)

We must now consider the following cases depending on where pT falls in equality relationship (2).
Let us consider the case when, ∆′1 = ∆1, pT ,∆′′2 . This implies that Γ1,∆

′,Γ2 = Γ �p ∆1, pT ,∆′′2 ,∆
′,∆′2

which means we can make the following inference:

Γ �p ∆1, pT ,∆′′2 ,∆
′,∆′2 `p T

ax

Let us consider the case when ∆′2 = ∆′′1 , pT ,∆2. This implies that Γ1,∆
′,Γ2 = Γ �p ∆′1,∆

′,∆′′1 , pT ,∆2

which means that we can make the following inference:

Γ �p ∆′1,∆
′,∆′′1 , pT ,∆2 `p T

ax

This covers the case where Γ2 is some local context, let us now consider when Γ2 = Γ′ �p′′
∆′′, but

by (1) we know that p′′ = p and ∆′′ = ∆1, pT ,∆2. This implies that Γ1,∆
′,Γ2 = Γ1,∆

′,Γ′ �p

∆1, pT ,∆2 which means we can make the following inference:
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Γ1,∆
′,Γ′ �p ∆1, pT ,∆2 `p T

ax

Case:

Γ `p T

Γ �p ∆ `p T
weak

We need to show that Γ1,∆
′,Γ2 `p T . We know

Γ1,Γ2 = Γ �p ∆ (3)

We will need to do a case split on the form of Γ2.
Let Γ2 be a local context, say ∆2. Then we know that Γ1 = Γ �p ∆1 by (3). This implies that
Γ1,∆

′,Γ2 = Γ �p ∆1,∆
′,∆2 which means that the following inference still holds.

Γ `p T

Γ �p ∆1,∆
′,∆2 `p T

weak

Let us now consider the case when Γ2 = Γ′ �p′
∆′′, by (3) we know that p′ = p and that ∆′′ = ∆.

This implies that Γ1,∆
′,Γ2 = Γ1,∆

′,Γ′ �p ∆ and that Γ = Γ1,Γ
′. The following derivation shows

that Γ1,∆
′,Γ2 `p T holds.

Γ1,Γ
′ `p T

Γ1,∆
′,Γ′ `p T

IH

Γ1,∆
′,Γ′ �p ∆ `p T

weak

Case:

Γ `p 〈p〉
unit

We know that Γ1,∆
′,Γ2 `p 〈p〉 holds as unit always holds regardless of the context.

Case:

Γ �p pT `p T ′

Γ `p T →p T ′
imp

We know that Γ1,Γ2 = Γ. The following derivation suffices to show that Γ1,∆
′,Γ2 `p T →p T ′.

Γ1,Γ2 �p pT `p T ′

Γ1,∆
′,Γ2 �p pT `p T ′

IH

Γ1,∆
′,Γ2 `p T →p T ′

imp

Case:

Γ `p̄ T
Γ `p T ′

Γ `p T →p̄ T ′
impBar

We know that Γ1,Γ2 = Γ. The following derivation suffices to show that Γ1,∆
′,Γ2 `p T →p̄ T ′
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Γ1,Γ2 `p̄ T

Γ1,∆
′,Γ2 `p̄ T

IH
Γ1,Γ2 `p T ′

Γ1,∆
′,Γ2 `p T ′

IH

Γ1,∆
′,Γ2 `p T →p̄ T ′

impBar

Case:

Γ `p T1

Γ `p T2

Γ `p T1 ∧p T2
and

We know that Γ1,Γ2 = Γ. The following derivation suffices to show that Γ1,∆
′,Γ2 `p T ∧p T ′.

Γ1,Γ2 `p T

Γ1,∆
′,Γ2 `p T

IH
Γ1,Γ2 `p T ′

Γ1,∆
′,Γ2 `p T ′

IH

Γ1,∆
′,Γ2 `p T ∧p T ′

and

Case:

Γ `p T1

Γ `p T1 ∧p̄ T2
andBar1

We know that Γ1,Γ2 = Γ. The following derivation suffices to show that Γ1,∆
′,Γ2 `p T ∧p̄ T ′.

Γ1,∆
′,Γ2 `p T

Γ1,Γ2 `p T
IH

Γ1,Γ2 `p T ∧p̄ T ′
andBar1

Case:

Γ `p T2

Γ `p T1 ∧p̄ T2
andBar2

We know that Γ1,Γ2 = Γ. The following derivation suffices to show that Γ1,∆
′,Γ2 `p T ∧p̄ T ′.

Γ1,Γ2 `p T ′

Γ1,∆
′,Γ2 `p T ′

IH

Γ1,∆
′,Γ2 `p T ∧p̄ T ′

andBar2

Case:

Γ, p̄T `p T ′

Γ, p̄T `p̄ T ′

Γ `p T
cut

We know that Γ1,Γ2 = Γ. The following derivation suffices to show that Γ1,∆
′,Γ2 `p T .

Γ1,Γ2, p̄T `p T ′

Γ1,∆
′,Γ2, p̄T `p T ′

IH
Γ1,Γ2, p̄T `p̄ T ′

Γ1,∆
′,Γ2, p̄T `p̄ T ′

IH

Γ1,∆
′,Γ2 `p T

Cut

Theorem 5 (Substitution). If Γ1, p1T1,Γ2 `p2 T2 and Γ1 `p1 T1, then Γ1,Γ2 `p2 T2.
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Proof. The proof is by induction on the structure of the first assumed derivation.

Case:

Γ �p′ ∆1, pT ,∆2 `p T
ax

We need to show that Γ1,Γ2 `p T holds. We know

Γ1, p1T1,Γ2 = Γ �p ∆1, pT ,∆2 (4)

We now case split on the form of Γ2. Suppose Γ2 is some local context ∆′2. We know Γ1 cannot
also be a local context, because then the left-hand side of (4) would not contain �p, as required
by the right-hand side. So Γ1 must equal Γ �p′

∆′1 for some ∆′1 where by (4) we have

∆′1, p1T1,∆
′
2 = ∆1, pT ,∆2 (5)

Now we case split on whether or not ∆′1 = ∆1. If it does, then by (5) we must also have p1T1 = pT
and ∆′2 = ∆2. So to obtain the desired Γ1,Γ2 `p T , we can use:

Γ1 `p1 T1

Γ1,∆
′
2 `p1 T1

localWeak

This derives the correct conclusion because Γ2 = ∆′2 and p1T1 = pT .

Now suppose ∆′1 6= ∆1. This implies that ∆′1,∆
′
2 still contains pT , by (4). So we can obtain the

desired conclusion this way:

Γ �p′
∆′1,∆

′
2 `p T

ax

Now let us consider the case when Γ2 = Γ′2 �p′′
∆′2 for some Γ′2, p′′, and ∆′2. But then by (4),

∆′2 = ∆1, pT ,∆2 and p′′ = p′, and we can derive the desired conclusion this way:

Γ1,Γ
′
2 �p′

∆1, pT ,∆2 `p T
ax

Case:

Γ `p T

Γ �p ∆ `p T
weak

We know
Γ1, p1T1,Γ2 = Γ �p ∆ (6)

We case split on the form of Γ2. Suppose Γ2 = Γ′2 �p ∆. Then (6) implies Γ = Γ1, p1T1,Γ
′
2, and

we have the following derivation:

Γ1, p1T1,Γ
′
2 `p T

Γ1,Γ
′
2 `p T

IH

Γ1,Γ2 `p T
weak

Now suppose Γ2 = ∆2. Then by (6), Γ1 must equal Γ �p ∆1, for some ∆1 where ∆ = ∆1, p1T1,∆2.
This implies Γ1,Γ2 = Γ �p ∆1,∆2 so we can use:

10



Γ `p T

Γ �p ∆1,∆2 `p T
weak

Case:

Γ `p 〈p〉
unit

We need to show that Γ1,Γ2 `p 〈p〉. Since unit holds regardless of what the context is, the result
trivially follows.

Case:

Γ �p pT `p T ′

Γ `p T →p T ′
imp

We know that Γ1, p1T1,Γ2 = Γ. The following derivation suffices to show that Γ1,Γ2 `p T →p T ′.

Γ1, p1T1,Γ2 �p pT `p T ′

Γ1,Γ2 �p pT `p T ′
IH

Γ1,Γ2 `p T →p T ′
imp

Case:

Γ `p̄ T
Γ `p T ′

Γ `p T →p̄ T ′
impBar

We know that Γ1, p1T1,Γ2 = Γ. The following derivation suffices to show that Γ1,Γ2 `p T →p̄ T ′

Γ1, p1T1,Γ2 `p̄ T

Γ1,Γ2 `p̄ T
IH

Γ1, p1T1,Γ2 `p T ′

Γ1,Γ2 `p T ′
IH

Γ1,Γ2 `p T →p̄ T ′
impBar

Case:

Γ `p T1

Γ `p T2

Γ `p T1 ∧p T2
and

We know that Γ1, p1T1,Γ2 = Γ. The following derivation suffices to show that Γ1,Γ2 `p T ∧p T ′.

Γ1, p1T1,Γ2 `p T

Γ1,Γ2 `p T
IH

Γ1, p1T1,Γ2 `p T ′

Γ1,Γ2 `p T ′
IH

Γ1,Γ2 `p T ∧p T ′
and

Case:

Γ `p T1

Γ `p T1 ∧p̄ T2
andBar1

We know that Γ1, p1T1,Γ2 = Γ. The following derivation suffices to show that Γ1,Γ2 `p T ∧p̄ T ′.
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Γ1, p1T1,Γ2 `p T

Γ1,Γ2 `p T
IH

Γ1,Γ2 `p T ∧p̄ T ′
andBar1

Case:

Γ `p T2

Γ `p T1 ∧p̄ T2
andBar2

We know that Γ1, p1T1,Γ2 = Γ. The following derivation suffices to show that Γ1,Γ2 `p T ∧p̄ T ′.

Γ1, p1T1,Γ2 `p T ′

Γ1,Γ2 `p T ′
IH

Γ1,Γ2 `p T ∧p̄ T ′
andBar2

Case:

Γ, p̄T `p T ′

Γ, p̄T `p̄ T ′

Γ `p T
cut

We know that Γ1, p1T1,Γ2 = Γ. The following derivation suffices to show that Γ1,Γ2 `p T .

Γ1, p1T1,Γ2, p̄T `p T ′

Γ1,Γ2, p̄T `p T ′
IH

Γ1, p1T1,Γ2, p̄T `p̄ T ′

Γ1,Γ2, p̄T `p̄ T ′
IH

Γ1,Γ2 `p T
Cut

6 Possible Incompleteness of Other Logics

Consider the following formula

A→+ (A→− A→+ 〈−〉)→− 〈+〉 (?1).

Using the usual translation to classical logic one will see that this formula is an embedding of the
law of excluded middle into intuitionistic logic. It is valid with respect to the semantics given in
Section 3.

Lemma 6. Suppose M = 〈W,�, V 〉 is a Kripke model, then for all worlds w ∈ W we have
JA→+ (A→− A→+ 〈−〉)→− 〈+〉Kw.

Proof. By definition we must show that ∀w1.(w � w1 and JAKw1) ⇒ J(A →− (A →+ 〈−〉)) →−
〈+〉Kw1 . Now suppose w1 ∈ W such that w � w1 and JAKw1 . Then we must show ∃w2.w2 �
w1 and ¬JA →− (A →+ 〈−〉)Kw2

and J〈+〉Kw2
. Take w1 for w2. Clearly, J〈+〉Kw1

holds. To show
¬JA→− (A→+ 〈−〉)Kw1

we must show ∀w3.w3 � w1 and ¬JAKw3
⇒ ¬JA→+ 〈−〉Kw3

. So assume
w3 ∈ W , w3 � w1, and ¬JAKw3

. Then we must show ¬JA →+ 〈−〉Kw3
. It suffices to show

∃w4.w3 � w4 and JAKw4 and ¬J〈−〉Kw4 . Take w1 for w4. Clearly, ¬J〈−〉Kw1 , and by assumption we
have JAKw1 . Therefore, JA→+ (A→− A→+ 〈−〉)→− 〈+〉Kw.
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In addition, this formula has an easy cut-free derivation (elided) in DIL.

In [2], Crolard defines an intuitionistic logic with subtraction called SLK1 which he states is com-
plete with respect to the standard Kripke semantics for intuitionistic logic. This system uses
the following forms of implication-left and subtraction-right rules, where the opposite context is
required to be empty:

Γ, B ` A
Γ ` B ⇒ A

A ` ∆, B

A−B ` ∆

We show next that the formula (?1) has no cut-free proof in SLK1. We first must translate (?1)
into the language of SLK1. Its equivalent form is the following:

A→ (True− ((A→ False)−A)) (?2).

Then using Crolard’s definitions (?2) has a shorter form A→∼(¬A−A).

Theorem 7. The formula A→ (True− ((A→ False)−A)) has no cut-free proof in SLK1.

Proof. We show that the sequent · ` A→ (True− ((A→ False)− A)) is not derivable using the
rules of SLK1 without cut. Its derivation must begin with the following:

A ` True− ((A→ False)−A)

· ` A→ (True− ((A→ False)−A))

At this point we have a few choices. The only rules we could make progress with are the weakening
rules, contraction rules, or the right subtraction rule. The right weakening rule would not work,
applying the left weakening rule would remove the hypothesis A, which is needed. The right
contraction rule would not result in any progress. Now the left contraction rules may be of use.
Applying it results in the following derivation.

A ` True A, (A→ False)−A ` ·
A,A ` True− ((A→ False)−A)

A ` True− ((A→ False)−A)

· ` A→ (True− ((A→ False)−A))

The next rule we need to be able to apply is the inference rule for subtraction on the left. However,
that rule restricts the left side of the sequent in the conclusion to a single formula. Here we have
the hypothesis A in context. So the only rule we could apply to make progress is the inference
rules for weakening on the left.

A ` True

A→ False ` A
(A→ False)−A ` ·
A, (A→ False)−A ` ·

A,A ` True− ((A→ False)−A)

A ` True− ((A→ False)−A)

· ` A→ (True− ((A→ False)−A))

We can see that we will never be able to prove A from ¬A. Using the inference rule for subtraction
on the right directly instead of using contraction first results in the same failure. In fact no matter
what we will end up trying to prove A from ¬A, because of the restriction on the inference rule
for subtraction on the left. Therefore there is no cut free derivation of this formula in SLK1.
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The previous theorem shows that SLK1 cannot satisfy both completeness (which follows directly
from Theorem 2.4.3 and Proposition 4.4.1 of [2]) and cut elimination. It is unclear if the previous
formula is derivable in SLK1 if cut is used. Note that Goré’s δBiInt [6] does not have any restriction
corresponding to that in the implication-right and subtraction-left rules of SLK1, so we conjecture
this formula is derivable in δBiInt (due to lack of experience with display calculi, we have not
been able to confirm this yet).

7 Conclusion

We have proposed Dualized Intuitionistic Logic (DIL), which is sound with respect to a standard
Kripke semantics for propositional intuitionistic logic with subtraction, and has the substitution
property. The crucial idea is to use modal contexts Γ to describe bi-directional paths, and incor-
porate monotonicity in the proof system. We plan to complete the metatheoretic analysis of DIL,
in particular completeness and cut elimination. Axiom cuts, where one premise is a weakening
(iterated application of weak) of ax cannot be eliminated, but we conjecture that all other cuts
can be. We then plan to develop DIL into a Dualized Type Theory.
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