
�e Combination of Dynamic and Static Typing from a
Categorical Perspective

Harley Eades III

Computer Science

Augusta University

Augusta, GA, USA

harley.eades@gmail.com

Michael Townsend

Computer Science

Augusta University

Augusta, GA, USA

mitownsend@augusta.edu

Abstract
In this paper we introduce a new categorical model based on

retracts that combines static and dynamic typing. In addition,

this model formally connects gradual typing to the seminal

work of Sco� and Lambek who showed that the untyped λ-

calculus can be considered as typed using retracts, and that the

type λ-calculus can be modeled in a cartesian closed category

respectively. Following this we extract from our model a new

simple type system which combines static and dynamic typing

called Core Grady. �en we develop a gradually typed surface

language for Core Grady, and show that it can be translated

into the core such that the gradual guarantee holds. In addition,

to show that the wider area of gradual type systems can bene�t

from our model we show that Siek and Taha’s gradual simply

typed λ-calculus can be modeled by the proposed semantics.

Finally, while a gradual type system allows for type casts to be

le� implicit we show that explicit casts can be derived in the

gradually typed surface language, and using the explicit casts

we show that more programs can be typed. For example, we

de�ne a typed �xpoint operator that can only be de�ned due

to the explicit casts in the gradually typed surface language.

CCSConcepts •�eory of computation→Denotational
semantics; Categorical semantics; Type theory; Functional
constructs; Type structures;

Keywords static typing, dynamic typing, gradual typing, cat-

egorical semantics, retract,typed lambda-calculus, untyped

lambda-calculus, functional programming

ACM Reference format:
Harley Eades III and Michael Townsend. 2016. �e Combination of Dy-

namic and Static Typing from a Categorical Perspective. In Proceedings
of ACM Conference, Washington, DC, USA, July 2017 (Conference’17),
21 pages.

DOI: 10.1145/nnnnnnn.nnnnnnn

1 Introduction
Gradual typing [23, 24] is a way to combine static and dy-

namic typing within the same language. For example, one can

structure their programs so that the safety critical parts are as

statically typed as possible to catch the most errors at compile

time, while rapidly prototyping other parts of their program

using dynamic typing.

Both authors where supported by the National Science Foundation CRII CISE

Research Initiation grant, “CRII:SHF: A New Foundation for A�ack Trees Based

on Monoidal Categories“, under Grant No. 1565557.

Conference’17, Washington, DC, USA
2016. 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

DOI: 10.1145/nnnnnnn.nnnnnnn

�e design of a gradual type system consists of two lan-

guages: a core language and a surface language. Both lan-

guages start as a static type system with a new type called the

unknown type, denoted in this paper by ?, whose inhabitants

are all untyped programs. �e core language then has an ex-

plicit mechanism for casting types to and from the unknown

type, and an operational semantics. However, the surface

language only consists of a type checking algorithm that is

designed so that casts are le� implicit, and then a�er type

checking succeeds a surface language program is translated

into the core language by a cast insertion algorithm.

Programming in the surface language requires the abil-

ity to implicitly cast data between consistent types during

eliminations. For example, (λ(x : ?).(succ (succ x))) 3 should

type check with type Nat even though 3 has type Nat and

x has type ?. Now not every cast should work, for example,

(λ(x : Bool).t) 3 should not type check, because it is inconsis-

tent to allow di�erent atomic types to be cast between each

other. �erefore, the surface language must be able to decide

which casts are consistent and which are not. �is is done

by extending the type checking algorithm with a binary rela-

tion called type consistency which determines which types are

castable between each other, e.g. every type will be consistent

with the unknown type.

Gradual type systems must satisfy the metatheoretic prop-

erty called the gradual guarantee. �e gradual guarantee states

that any well-typed program can slide between being more

statically typed or being more dynamically typed by insert-

ing or removing casts without changing the meaning or the

behavior of the program. �e formal statement of the grad-

ual guarantee is given in Section 7. �is property was �rst

proposed by Siek et al. [24] to set apart systems that simply

combine dynamic and static typing and gradual type systems.

Just as Siek et al. report [22–24] there are a number of

programming languages that combine static and dynamic typ-

ing with implicit casting to and from the unknown type, for

example, Boo [7], Bigloo [3, 20], Cecil [5], Visual Basic .Net,

C# [16], Professor J [9], and many more. In addition, there

are languages that combine static and dynamic typing with

explicit casting only. Abadi et al. [1] combine dynamic and

static typing by adding a new type called Dynamic along with

a new case construct for pa�ern matching on types, and Hen-

glein [10] de�nes the dynamic λ-calculus by adding a new type

Dyn to the simply typed λ-calculus and then adding primitive

casting operations called tagging and check-and-untag. Please

see the introduction to Siek et al. [24] for a more complete list.

1

As we can see the combination of dynamic and static typing,

as well as gradual type systems, are important to both industry

and academia. �us, expanding gradual type systems with

new features is an increasingly important line of research [8,

12, 15, 22, 23]
1
. �erefore, it is of the utmost importance that

we be able to formally reason about gradual type systems so

as to insure new designs and extensions are correct. However,

there are no categorical models, in fact not many mathematical

models at all, to aid in the design of new gradual type systems

or their extensions.

In this paper we propose a new categorical model of the

core casting calculus of gradual type systems based on the

seminal work of Sco� [21] and Lambek [14], thus merging

the categorical model of the statically typed λ-calculus with

the categorical model of the untyped λ-calculus into a new

model that combines the two. Our categorical model leads

to a new and simple type theory that combines dynamic and

static typing with explicit casts called Core Grady. Further-

more, it is has a less complex language design compared to

existing core languages for gradual typing, for example, Siek

and Taha’s system [22], because it does not depend on type

consistency where theirs does. Our new model also gives a

rigorous framework that can be used while developing new

gradual type systems or extensions of existing gradual type

systems.

One strength and main motivation for giving a categorical

model to a programming language is that it can expose the

fundamental structure of the language. �is arises because

a lot of the language features that o�en cloud the picture go

away, for example, syntactic notions like variables disappear.

�is can o�en simplify things and expose the underlying struc-

ture. For example, when giving the simply typed λ-calculus a

categorical model we see that it is a cartesian closed category,

but we also know that intuitionistic logic has the same model

due to Lambek [13]; on the syntactic side these two theories

are equivalent as well due to Howard [11]; this is known as

the Curry-Howard-Lambek correspondence.

�e previous point highlights one of the most powerful

features of category theory: its ability to relate seemingly

unrelated theories. It is quite surprising that the typed λ-

calculus and intuitionistic logic share the same model. �us,

de�ning a categorical model for a particular programming

language may reveal new and interesting relationships with

existing work. In fact, one of the contributions of this paper is

the new connection between Sco� and Lambek’s work to the

new area of gradual typing and combing static and dynamic

typing.

However, that motivation places de�ning a categorical model

as an a�er thought. �e programming languages developed

here were designed from the other way around. We started

with the question, how do we combine static and dynamic typ-

ing categorically? �en a�er developing the model we use it to

push us toward the correct language design. Reynolds [4] was

a big advocate for the use of category theory in programming

language research for this reason. We agree with Brookes et

1
�ere are even more examples in the list of accepted papers for ICFP 2017, for

example, extending gradual type systems with session types and polymorphism.

al. (from p. 3 of [4]) that the following quote, originally from

[18], makes this point nicely:

Programming language semanticists should be
the obstetricians of programming languages, not
their coroners.

— John C. Reynolds
Categorical semantics provides a powerful tool to study

language extensions. For example, purely functional program-

ming in Haskell would not be where it is without the seminal

work of Moggi and Wadler [17, 26] on using monads – a purely

categorical notion – to add side e�ects to pure functional pro-

gramming languages. �us, we believe that developing these

types of models for new language designs and features can be

hugely bene�cial.

1.1 Overview
We now give a brief overview of our main results, but from a

typed λ-calculus perspective, but we will transition to category

theory in Section 2. Suppose we add the unknown type, ?, and

two functions squash : (? → ?) → ? and split : ? → (? →
?) to the simply typed λ-calculus with the natural numbers.

Furthermore, we require that for any program, t, of type ?→ ?,

we have split (squash t) t . Categorically split and squash
de�ne what is called a retract. Sco� [19] showed that this

is enough to encode the untyped λ-calculus into a statically

typed se�ing:

dx e = x
dλx .t e = λ (x : ?). dt e

dx t2 e = (split x) dt2 e
dt1 t2 e = dt1 e (squash dt2 e)

For example, if Ω = λx .x x , then |Ω | = λ(x : ?).(split x) x, and

|Ω Ω | = |Ω | (squash |Ω |) is the typical diverging term.

We have at this point a typed functional programming lan-

guage with two fragments: the statically typed λ-calculus and

the untyped λ-calculus. However, they are just si�ing side-

by-side. Now suppose for any atomic type A, excluding the

unknown type, we add two new functions boxA : A→ ? and

unboxA : ? → A such that for any term, t, of atomic type A,

we have that unboxA (boxA t) t – a second retract. �is

de�nes the bridge between the typed fragment and the un-

typed fragment. We will show in the next section that both

box and unbox can be generalized to arbitrary types, and thus,

they will subsume split and squash as well, hence, reducing

all explicit casts to just two functions simplifying the language

even further – in the rest of this section we only use box and

unbox.

At this point we have basically built up Core Grady (Sec-

tion 3) the corresponding type theory to our categorical model

(Section 2). We can move statically typed data in between the

two fragments. An example may help solidify the previous

point.

Core Grady does not have a primitive notion of recursion,

but it is well-known that we can de�ne the Y combinator in

the untyped λ-calculus, and hence, in Core Grady. First, we

have a full implementation of every language in this paper

available
2
. All examples in this paper can be typed and ran in

the implementation, and thus, we make use of Core Grady’s

2
Please see h�ps://ct-gradual-typing.github.io/Grady/ for access to the imple-

mentation as well as full documentation on how to install and use it.

2

https://ct-gradual-typing.github.io/Grady/

concrete syntax which is very similar to Haskell’s and does

not venture too far from the mathematical syntax we will

introduce in Section 3.

�e de�nition of the Y combinator in Core Grady is as

follows:

omega : (? → ?)→ ?

omega = \(x : ? → ?)→ (x (box (? → ?) x));

fix : (? → ?)→ ?

fix = \(f : ? → ?)→

omega (\(x:?) → f ((unbox (? → ?) x) x));

Using �x we can de�ne the usual arithmetic operations in

Core Grady, but we use a typed version of �x – we have

developed many more examples in Core Grady please see the

implementation (Footnote 2).

fixNat : ((Nat→ Nat)→ (Nat→ Nat))→ (Nat→ Nat)

fixNat = \(f:(Nat→ Nat)→ (Nat→ Nat))→

unbox (Nat→ Nat) (fix (\(y:?) → box (Nat→ Nat)

(f (unbox (Nat→ Nat) y))));

add : Nat→ Nat→ Nat

add = \(m: Nat) → fixNat

(\(r: Nat→ Nat)→

\(n: Nat) → case n of 0→ m, (succ n') → succ (r n'));

mult : Nat→ Nat→ Nat

mult = \(m: Nat) → fixNat

(\(r: Nat→ Nat)→

\(n: Nat) → case n of 0→ 0, (succ n') → add m (r n'));

�e function �xNat is de�ned so that it does recursion on

the type Nat → Nat, thus, it must take in an argument, f :

(Nat → Nat) → (Nat → Nat), and produce a function of

type Nat → Nat. However, we already have �x de�ned in

the untyped fragment, and so, we can de�ne �xNat using

�x by boxing up the typed data. �is means we must cast

f : (Nat → Nat) → (Nat → Nat) into a function of type

(?→ ?) → ? and we do this by η-expanding f and casting the

input and output using box and unbox to arrive at the function

λ(y : ?).box(Nat→Nat) (f (unbox(Nat→Nat) y)) : ?→ ?. Finally,

we can apply �x , and then unbox its output to the type Nat→
Nat. �us, the de�nition of �xNat moves typed data to the

untyped fragment using box and then moves it back using

unbox.

�e terms box and unbox correspond to explicit casts. In

Section 4 we develop a gradually typed surface language called

Surface Grady that allows for the casts to be le� implicit. �en

we show that both Surface and Core Grady can be soundly

interpreted into our categorical model in Section 5. Further-

more, we prove the gradual guarantee for Surface and Core

Grady in Section 7.

To insure that our categorical model can be used to study

other gradual type systems we show that Siek and Taha’s grad-

ually typed λ-calculus [23, 24] can also be soundly modeled

by our semantics in Section 6.

Finally, while a gradual type system allows for type casts to

be le� implicit we show, in Section 8, that explicit casts can be

derived in the gradually typed surface language, and using the

explicit casts we show that more programs can be typed. For

example, we de�ne a typed �xpoint operator that can only be

de�ned due to the explicit casts in the gradually typed surface

language.

2 �e Categorical Model
�e model we develop here builds on the seminal work of

Lambek [13] and Sco� [19]. Lambek [13] showed that the

typed λ-calculus can be modeled by a cartesian closed category.

In the same volume as Lambek, Sco� essentially showed that

the untyped λ-calculus is actually typed. �at is, typed theories

are more fundamental than untyped ones. He accomplished

this by adding a single object – or type – ?, and two morphisms

squash : (? → ?) → ? and split : ? → (? → ?), such that,

squash; split = id : (? → ?) → (? → ?), to a cartesian closed

category
3
. At this point he was able to translate the untyped

λ-calculus into this unityped one.

Categorically, Sco� modeled split and squash as the mor-

phisms in a retract within a cartesian closed category – the

same model as typed λ-calculus.

De�nition 2.1. Suppose C is a category. �en an object A is

a retract of an object B if there are morphisms i : A //B and

r : B //A such that i; r = idA.

�us, ? → ? is a retract of ?, but we also require that ? × ?

be a retract of ?; this is not new, see Lambek and Sco� [14].

Pu�ing this together we obtain Sco�’s model of the untyped

λ-calculus.

De�nition 2.2. An untyped λ-model, (C, ?, split, squash),
is a cartesian closed category C with a distinguished object

? and morphisms squash : S //
? and split : ?

// S making

the object S a retract of ?, where S is either ?→ ? or ? × ?.

�eorem 2.3 (Sco� [19]). An untyped λ-model is a sound and
complete model of the untyped λ-calculus.

So far we know how to model static types (typed λ-calculus)

and unknown types (the untyped λ-calculus). To make the

Grady languages a bit more interesting we add natural num-

bers, but we will need a way to model these in a cartesian

closed category.

We model the natural numbers with their (non-recursive)

eliminator using what we call a non-recursive natural number

object. �is is a simpli�cation of the traditional natural number

object; see Lambek and Sco� [14].

De�nition 2.4. Suppose C is a cartesian closed category. A

non-recursive natural number object (NRNO) is an object

Nat of C and morphisms z : 1
//Nat and succ : Nat //Nat

of C, such that, for any morphisms f : Y // X and д : Y ×
Nat // X of C there is an unique morphism caseY ,X 〈f ,д〉 :

Y × Nat // X such that the following hold:

〈idY , �Y ; z〉; caseY ,X 〈f , д〉 = f 〈idY × succ〉; caseY ,X 〈f , д〉 = д

Informally, the two equations essentially assert that we can

de�ne caseY ,X as follows:

caseY ,X 〈f ,д〉y 0 = f y caseY ,X 〈f ,д〉y (succ n) = дy n

3
We use diagrammatic notation for composition of morphisms. If f : A // B

and д : B // C, then their composition is denoted by f ;д : A // C.

3

At this point we can model both static and unknown types

with natural numbers in a cartesian closed category, but we do

not have any way of moving typed data into the untyped part

and vice versa to obtain dynamic typing. To accomplish this we

add two new morphisms boxC : C //
? and unboxC : ?

// C
such that each atomic type, C, is a retract of ?. �is enforces

that the only time we can cast ? to another type is if it were

boxed up in the �rst place. Combining all of these insights we

obtain the complete categorical model.

De�nition 2.5. A gradual λ-model, (T ,C, ?, T, split,
squash, box, unbox, error), whereT is a discrete category with

at least two objects Nat and Unit, C is a cartesian closed cat-

egory with an NRNO, (C, ?, split, squash) is an untyped λ-

model, T : T // C is an embedding – a full and faithful func-

tor that is injective on objects – and for every object A of T

there are morphisms boxA : TA //
? and unboxA : ?

//TA
making TA a retract of ?. Furthermore, to model dynamic

type errors, there is a morphism, errA : Unit // A of C,

such that, the following equations hold w.r.t. errorA,B =

A
trivA // Unit

errB // B:

boxTA ; unboxT B = errorTA,T B, where A , B
squashS

1

; splitS
2

= errorS
1
,S

2
, where S1 , S2

f ; errorB,C = errorA,C , where f : A // B
errorA,B ; f = errorA,C , where f : B //C
〈errorA,B, f 〉 = errorA,B×C, where f : A //C
〈f , errorA,C 〉 = errorA,B×C, where f : A // B

curry(errorA×B,C) = errorA,B→C

We call the category T the category of atomic types. We call

an object, A, atomic i� there is some object A′ in T such that

A = TA′. Note that we do not consider ? an atomic type.

Triggering dynamic type errors is a fundamental property

of the criteria for gradually typed languages, and thus, the

model must capture this. �e new morphism errA : Unit //A
is combined with the terminal morphism, trivA : A // Unit,
which is a unique morphism guaranteed to exist because C is

cartesian closed, to de�ne the morphism errorA,B : A // B
that signi�es that one tried to unbox or split at the wrong type

resulting in a dynamic type error; this is captured by the �rst

and second equations in the de�nition. If we view morphisms

as programs, then the other equations are congruence rules

that trigger a dynamic type error for the whole program when

one of its subparts trigger a dynamic type error. �e following

extends the error equations to the functors − × − and − → −:

Lemma 2.6 (Extended Errors). Suppose (T ,C, ?, T, split,
squash, box, unbox, error) is a gradual λ-model. �en the fol-
lowing equations hold:

f × errorB,C = errorA×B,C×D, where f : A //C
errorA,C × f = errorA×B,C×D, where f : B // D
f → errorB,C = errorA→B,C→D, where f : C // A
errorC,A → f = errorA→B,C→D, where f : B // D

Proof. �e following de�ne the morphism part of the two

functors f × д : (A × B) // (C × D) and f → д : (A →
B) // (C → D):

f × д = 〈fst; f , snd;д〉,
where f : A //C and д : B // D

f → д = curry((idA→B × f); appA,B ;д),
where f : C // A and д : B // D

First, note that fst : (A × B) // A, snd : (A × B) // B, and

appA,B : ((A→ B) × A) // B all exist by the de�nition of a

cartesian closed category.

It is now quite obvious that if either f or д is error in the

previous two de�nitions, then by using the equations from the

de�nition of a gradual λ-model (De�nition 2.5) the application

of either of the functors will result in error. �

As the model is de�ned it is unclear if we can cast any type

to ?, and vice versa, but we must be able to do this in order to

model full dynamic typing. In the remainder of this section

we show that we can build up such casts in terms of the basic

features of our model. To cast any type A to ? we will build

casting morphisms that �rst take the object A to its skeleton,

and then takes the skeleton to ?.

De�nition 2.7. Suppose (T ,C, ?, T, split, squash, box,
unbox, error) is a gradual λ-model. �en we call any morphism

de�ned completely in terms of id, the functors −×− and − →

−, split and squash, and box and unbox a casting morphism.

De�nition 2.8. Suppose (T ,C, ?, T, split, squash, box,
unbox, error) is a gradual λ-model. �e skeleton of an object

A of C is an object S that is constructed by replacing each

atomic type in A with ?. Given an object A we denote its

skeleton by skeletonA.

One should think of the skeleton of an object as the sup-

porting type structure of the object, but we do not know

what kind of data is actually in the structure. For exam-

ple, the skeleton of the object Nat is ?, and the skeleton of

(Nat × Unit) → Nat→ Nat is (? × ?) → ?→ ?.

�e next de�nition de�nes a means of constructing a casting

morphism that casts a type A to its skeleton and vice versa.

�is de�nition is by mutual recursion on the input type.

De�nition 2.9. Suppose (T ,C, ?, T, split, squash, box,
unbox, error) is a gradual λ-model. �en for any object A
whose skeleton is S we de�ne the morphisms b̂oxA : A // S
and

FunboxA : S // A by mutual recursion on A as follows:

b̂oxA = boxA
when A is atomic

b̂ox
?
= id

?

b̂ox(A1→A2) =
FunboxA1

→ b̂oxA2

b̂ox(A1×A2) = b̂oxA1
× b̂oxA2

FunboxA = unboxA
when A is atomic

Funbox
?
= id

?

Funbox(A1→A2) = b̂oxA1
→FunboxA2

Funbox(A1×A2) =
FunboxA1

×FunboxA2

�e de�nition of both b̂ox or
Funbox use the functor − → − :

Cop × C // C which is contravariant in its �rst argument,

and thus, in that contravariant position we must make a re-

cursive call to the opposite function, and hence, they must

be mutually de�ned. Every call to either b̂ox or
Funbox in the

previous de�nition is on a smaller object than the input object.

�us, their de�nitions are well founded. Furthermore, b̂ox and

Funbox form a retract between A and S.

4

Lemma 2.10 (Boxing and Unboxing Li�ed Retract). Suppose
(T ,C, ?, T, split, squash, box, unbox, error) is a gradual
λ-model. �en for any object A, b̂oxA;

FunboxA = idA : A // A.
Furthermore, for any objects A and B such that A , B,
b̂oxA;

FunboxB = errorA,B .

Proof. �is proof holds by induction on the form A. Please

see Appendix B.1 for the complete proof. �

As an example, suppose we wanted to cast the type (Nat×?) →
Nat to its skeleton (? × ?) → ?. �en we can obtain a casting

morphisms that will do this as follows:

b̂ox((Nat×?)→Nat) = (unboxNat × id?
) → boxNat

We can also cast a morphism A
f // B to a morphism

FunboxA; f ;b̂oxA : S1
// S2 where S1 = skeletonA and S2 =

skeleton B. Now if we have a second
FunboxB;д; b̂oxC : S2

//S3

then their composition reduces to composition at the typed

level:

S3 Coo b̂oxC

S1

S3

��

S1 A
FunboxA // A

C

f ;д

��
C Boo д

A

C

f ;д

��

A B
f // B

BB S2
oo
FunboxB

B

B

B S2

b̂oxB // S2

S2

�e right most diagram commutes because B is a retract of S2,

and the le� unannotated arrow is the composition
FunboxA; f ;

д; b̂oxC . �is tells us that we have a functor S : C // S:

SA = skeletonA
S(f : A // B) =FunboxA; f ; b̂oxA

whereS is the full subcategory of C consisting of the skeletons

and morphisms between them, that is, S is a cartesian closed

category with one basic object ? such that (S, ?, split, squash)
is an untyped λ-model. �e following turns out to be true.

Lemma 2.11 (S is faithful). Suppose (T ,C, ?, T, split, squash,
box, unbox, error) is a gradual λ-model, and (S, ?, split, squash)
is the category of skeletons. �en the functor S : C //S is faith-
ful.

Proof. �is proof follows from the de�nition of S and Lemma

2.10. For the full proof see Appendix B.2. �

�us, we can think of the functor S as an injection of the typed

world into the untyped one.

Now that we can cast any type into its skeleton we must

show that every skeleton can be cast to ?. We do this similarly

to the above and li� split and squash to arbitrary skeletons.

De�nition 2.12. Suppose (S, ?, split, squash) is the category

of skeletons. �en for any skeleton S we de�ne the morphisms

FsquashS : S //
? and ŝplitS : ?

// S by mutual recursion on

S as follows:

Fsquash
?
= id?

Fsquash(S1→S2)
= (ŝplitS1

→ FsquashS2

); squash
?→?

Fsquash(S1×S2)
= (FsquashS1

× FsquashS2

); squash
?×?

ŝplit
?
= id?

ŝplit(S1→S2)
= split

?→?
; (FsquashS1

→ ŝplitS2

)

ŝplit(S1×S2)
= split

?×?; (ŝplitS1

× ŝplitS2

)

As an example we will construct the casting morphism that

casts the skeleton (? × ?) → ? to ?:

Fsquash(?×?)→?
= (split

?×?
→ id?); squash?→?

.

Just as we saw above, spli�ing and squashing forms a re-

tract.

Lemma 2.13 (Spli�ing and Squashing Li�ed Retract). Sup-
pose (S, ?, split, squash) is the category of skeletons. �en for
any skeleton S, FsquashS ; ŝplitS = idS : S //S. Furthermore, for
any skeletons S1 and S2 such that S1 , S2, FsquashS1

; ŝplitS2

=

errorS1,S2.

Proof. �e proof is similar to the proof of the boxing and

unboxing li�ed retract (Lemma 2.10). �

�ere is also a faithful functor from S toU whereU is the

full subcategory of S that consists of the single object ? and

all its morphisms between it:

US =?

U(f : S1
// S2) = ŝplitS1

; f ;
FsquashS2

�is �nally implies that there is a functor C : C //U that

injects all of C into the object ?.

Lemma 2.14 (Casting to ?). Suppose (T ,C, ?, T, split, squash,
box, unbox, error) is a gradual λ-model, (S, ?, split, squash) is
the full subcategory of skeletons, and (U , ?) is the full subcate-
gory containing only ? and its morphisms. �en there is a faithful

functor C = C S // S U //U .

In a way we can think of C : C //U as a forgetful functor.

It forgets the type information.

Ge�ing back the typed information is harder. �ere is no

nice functor from U to C, because we need more informa-

tion. However, given a type A we can always obtain a casting

morphism from ? to A by (ŝplit(skeletonA)); (FunboxA) : ?
//A.

�erefore, we have the following result.

Lemma 2.15 (Casting Morphisms to ?). Suppose (T ,C, ?, T,
split, squash, box, unbox, error) is a gradual λ-model, and A is
an object of C. �en there exists casting morphisms from A to ?
and vice versa that make A a retract of ?.

Proof. �e two morphisms are as follows:

BoxA := b̂oxA;
Fsquash(skeletonA) : A //

?

UnboxA := ŝplit(skeletonA) ; FunboxA : ?
// A

�e fact the these form a retract between A and ?, and raise

dynamic type errors holds by Lemma 2.10 and Lemma 2.13. �

5

(types) A, B, C ::=Unit | Nat | ? | A × B | A→ B

(skeletons) S, K, U ::= ? | S1 × S2 | S1 → S2

(terms) t ::= x | triv | 0 | succ t | (t1, t2) | fst t | snd t
| λ (x : A).t | t1 t2 | case t : Nat of 0→ t1, (succ x) → t2
| boxA | unboxA | errorA

(values) v ::= λ (x : A).t

(evaluation contexts) E ::=� t2 | unboxA � | succ� | fst� | snd� | (�, t)
| (t, �) | case� : Nat of 0→ t1, (succ x) → t2

(contexts) Γ ::= · | x : A | Γ1, Γ2

Figure 1. Syntax for Core Grady

�e previous result has a number of implications. It com-

pletely brings together the static and dynamic fragments of the

gradual λ-model, and thus, fully relating the combination of

dynamic and static typing to the past work of Lambek and Sco�

[13, 19]. It will allow for the de�nition of casting morphisms

between arbitrary objects. Finally, from a practical perspective

it will simplify our corresponding type systems derived from

this model, because BoxS = FsquashS and UnboxS = ŝplitS
when S is a skeleton, and hence, we will only need a single

retract in the corresponding type systems.

3 Core Grady
Just as the simply typed λ-calculus corresponds to cartesian

closed categories our categorical model has a correspond-

ing type theory we call Core Grady. It consists of all of

the structure found in the model. To move from the model

to Core Grady we apply the Curry-Howard-Lambek corre-

spondence [13, 27]. Objects become types, and morphisms,

t : Γ //A, become programs in context usually denoted by

Γ `CG t : A which corresponds to Core Grady’s type checking

judgment. We will discuss this correspondence in detail in

Section 5.

�e syntax for Core Grady is de�ned in Figure 1. �e

syntax is a straightforward extension of the simply typed

λ-calculus. Arbitrary programs or terms are denoted by t
and values by v. �e la�er are used to in�uence the eval-

uation strategy used by Core Grady. Natural numbers are

denoted by 0 and succ t where the la�er is the successor of

t. �e non-recursive natural number eliminator is denoted

by case t : Nat of 0→ t1, (succ x) → t2. �e most interesting

aspect of the syntax is that boxA and unboxA are not restricted

to atomic types, but actually correspond to BoxA and UnboxA
from Lemma 2.15. �at result shows that these can actually be

de�ned in terms of b̂oxA,
FunboxA, ŝplitS , and

FsquashS when

A is any type and S is a skeleton, but we take the general

versions as primitive, because they are the most useful from a

programming perspective. In addition, as we mentioned above

BoxA and UnboxA divert to
FsquashA and ŝplitA respectively

when A is a skeleton. �is implies that we no longer need two

retracts, and hence, simpli�es the language.

Multisets of pairs of variables and types, denoted by x : A,

called a typing context or just a context is denoted by Γ. �e

empty context is denoted by ·, and the union of contexts Γ1

x : A ∈ Γ

Γ `CG x : A
var

Γ `CG boxA : A→ ?

box

Γ `CG unboxA : ?→ A
unbox

Γ `CG triv : Unit
Unit

Γ `CG 0 : Nat
zero

Γ `CG t : Nat

Γ `CG succ t : Nat
succ

Γ `CG t : Nat
Γ `CG t1 : A Γ, x : Nat `CG t2 : A

Γ `CG case t : Nat of 0→ t1, (succ x) → t2 : A
Nate

Γ `CG t1 : A1 Γ `CG t2 : A2

Γ `CG (t1, t2) : A1 × A2

×i
Γ `CG t : A1 × A2

Γ `CG fst t : A1

×e
1

Γ `CG t : A1 × A2

Γ `CG snd t : A2

×e
2

Γ, x : A `CG t : B
Γ `CG λ (x : A).t : A→ B

→i

Γ `CG t1 : A→ B Γ `CG t2 : A
Γ `CG t1 t2 : B

→e
Γ `CG errorA : A

error

Figure 2. Typing rules for Core Grady

unboxA (boxA t) t
retract

A , B
unboxA (boxB t) errorA

raise

x : B `CG E[x] : A
E[errorB] errorA

error

case 0 : Nat of 0→ t1, (succ x) → t2 t1
Nate

1

case (succ t) : Nat of 0→ t1, (succ x) → t2 [t/x]t2
Nate

2

(λ (x : A1).t2) t1 [t1/x]t2
β

fst (t1, t2) t1
×e

1

snd (t1, t2) t2
×e

2

t1 t2
E[t1] E[t2]

cong

Figure 3. Reduction rules for Core Grady

and Γ2 is denoted by Γ1, Γ2. Typing contexts are used to keep

track of the types of free variables during type checking.

�e typing judgment is denoted by Γ `CG t : A, and is

read “the term t has type A in context Γ.” �e typing judgment

is de�ned by the type checking rules in Figure 2. �e type

checking rules are an extension of the typing rules for the

simply typed λ-calculus. �e casting terms are all typed as

axioms with their expected types. �is implies that applying

either boxA or unboxA to some other term corresponds to

function application as opposed to succ t which cannot be

used without its argument. �is fact is used in the de�nition

of the evaluation strategy.

Computing with terms is achieved by de�ning a reduction

relation denoted by t1 t2 and is read as “the term t1 reduces

(or evaluates) in one step to the term t2.” �e reduction relation

is de�ned in Figure 3, and we denote the least re�exive and

transitive closure of as ∗. Core Grady’s reduction strategy

is an extended version of call-by-name. It is speci�ed using

evaluation contexts that are denoted by E and are de�ned in

Figure 1.

An evaluation context is essentially a term with a hole,

denoted by �, in it. �e hole can be �lled (or plugged) with a

term and is denoted by E[t]. Note that plugging the hole of an

6

Syntax:

(terms) t ::= x | triv | 0 | succ t | (t1, t2) | fst t | snd t
| λ (x : A).t | t1 t2 | case t of 0→ t1, (succ x) → t2

Metafunctions:

nat(?) = Nat
nat(Nat) = Nat

prod(?) = ? × ?

prod(A × B) = A × B

fun(?) = ?→ ?

fun(A→ B) = A→ B

Figure 4. Syntax and Metafunctions for Surface Grady

evaluation context results in a term. Evaluation contexts are

used to give a compact de�nition of an evaluation strategy by

�rst specifying the reduction axioms (Figure 3), then de�ning

the evaluation contexts by placing a hole within the syntax of

terms that speci�es where evaluation is allowed to take place

(Figure 1), �nally, the following reduction rule is then added:

t1 t2
E[t1] E[t2]

cong

�is rule states that evaluation can take place in the locations

of the holes given in the de�nition of evaluation contexts

(Figure 1).

How we de�ne the syntax of values and evaluation contexts,

and the evaluation rules determines the evaluation strategy.

We consider as values λ-abstractions. �us, the expression

λ(x : A).� is not an evaluation context, and hence, there is no

evaluation under λ-abstractions. Similarly, we have no evalua-

tion contexts which allow evaluation under the branches of a

case-expression. In addition, the evaluation context unboxA �
allows for reduction in the argument position of an application

of unboxA, but we do not allow reduction in the argument

position of an application of boxA. �ese restrictions are used

to prevent in�nite reduction from occurring in those posi-

tions. We want evaluation to make as much overall progress

as possible.

Perhaps the most interesting reduction rules from Figure 3

are the �rst three: retract, raise, and error. �e �rst two handle

dynamic type casts and the third preserves dynamic type errors

that have been raised in an evaluation position. �e error

reduction rule depends on typing which is necessary to insure

that the type annotation is correct. �is insures that type

preservation will hold. Practically speaking, this dependency

on typing is not signi�cant, because we only evaluate closed

well-typed programs anyway.

From a programming perspective Core Grady has a lot

going for it, but it is unfortunate the programmer is required

to insert explicit casts when wanting to program dynamically.

�is implies that it is not possible to program in dynamic

style when using Core Grady. In the next section we �x this

problem by developing a gradually typed surface language for

Core Grady in the spirit of Siek and Taha’s gradually typed

λ-calculus [23, 24].

4 Surface Grady
In this section we introduce the gradually typed surface lan-

guage Surface Grady. Surface Grady is a small extension of

Typing Rules:

x : A ∈ Γ

Γ `SG x : A
var

Γ `SG triv : Unit
Unit

Γ `SG 0 : Nat
zero

Γ `SG t : A nat(A) = Nat

Γ `SG succ t : Nat
succ

Γ `SG t : C nat(C) = Nat
Γ `SG t1 : A1 A1 ∼ A
Γ, x : Nat `SG t2 : A2 A2 ∼ A
Γ `SG case t of 0→ t1, (succ x) → t2 : A

Nate

Γ `SG t1 : A1 Γ `SG t2 : A2

Γ `SG (t1, t2) : A1 × A2

×i

Γ `SG t : B prod(B) = A1 × A2

Γ `SG fst t : A1

×e
1

Γ `SG t : B prod(B) = A1 × A2

Γ `SG snd t : A2

×e
2

Γ, x : A `SG t : B
Γ `SG λ (x : A).t : A→ B

→i

Γ `SG t1 : C A2 ∼ A1

Γ `SG t2 : A2 fun(C) = A1 → B1

Γ `SG t1 t2 : B1

→e

Type Consistency:

A ∼ A
re�

A ∼ ?

box
? ∼ A

unbox

A2 ∼ A1 B1 ∼ B2

(A1 → B1) ∼ (A2 → B2)
→

A1 ∼ A2 B1 ∼ B2

(A1 × B1) ∼ (A2 × B2)
×

Figure 5. Typing rules for Surface Grady

the surface language given by Siek et al. [24]. We have added

natural numbers with their eliminator as well as cartesian

products. �e Surface Grady syntax is de�ned in Figure 4, and

it corresponds to Core Grady’s syntax (Figure 1), but without

the explicit casts. �e syntax for types and typing contexts do

not change, and so we do not repeat them here.

�e metafunctions nat(A), prod(A), and fun(A) are partial

functions that will be used to determine when to use box in the

elimination type checking rules for natural numbers, cartesian

products, and function applications respectively. For example,

if nat(A) = Nat, then the type A must have been either ? or

Nat, and if it were the former then we know we can cast A
to Nat via boxNat. If prod(A) = B × C, then either A = ? and

B × C = ?× ? or A = B × C for some other types B and C. �is

implies that if the former is true, then we can cast A to B × C
via box(?×?) . �e case is similar for fun(A).

�e type checking and type consistency rules are given

in Figure 5. Similarly to Core Grady the typing judgment is

denoted by Γ `SG t : A. Type checking depends on the notion

of type consistency; �rst proposed by Siek and Taha [23].

�is is a re�exive and symmetric, but non-transitive, relation

on types denoted by A ∼ B which can be read as “the type

A is consistent with the type B.” �e lack of transitivity is

important, because if type consistency were transitive, then

all types would be consistent, but this is too general. Consider

an example, type consistency is responsible for the function

application (λ(x : ?).(succ x)) 3 being typable in the surface

language, because type Nat is consistent with the type ?. �is

implies that the elimination rule for function types must be

extended with type consistency.

7

Type consistency states when two types are safely castable

between each other when inserting explicit casts, and so, from

a semantical perspective if A ∼ B holds, then there are casting

morphisms (De�nition 2.7) c1 : A // B and c2 : B // A; see

Lemma 5.2 in Section 5.

�e typing rules for Surface Grady are a conservative ex-

tension of the typing rules for Core Grady (Figure 2). �e

extension is the removal of explicit casts and the addition of

type consistency and the metafunctions from Figure 4. Each

rule is modi�ed in positions where casting is likely to occur

which would be in all of the elimination rules as well as the

typing rule for successor, because it is a type of application.

Consider the elimination rule for function applications:

Γ `SG t1 : C
Γ `SG t2 : A2 fun(C) = A1 → B1 A2 ∼ A1

Γ `SG t1 t2 : B1

→e

�is rule has been extended with type consistency. �e type

of t1 is allowed to be either ? or a function type A1 → B1,

by the de�nition of fun(C), if the former is true, then A1 →

B1 = ? → ? and A2 can be any type at all, but if C = A1 →

B1, then A2 must be consistent with A1. Notice that if C =
A1 → B1 and A2 = A1, then this rule is equivalent to the

usual rule for function application. We can now see that our

example program (λ(x : ?).(succ x)) 3 is typable in Surface

Grady. Similar reasoning can be used to understand the other

typing rules as well.

Surface Grady is translated into Core Grady using the cast

insertion algorithm detailed in Figure 6. �e cast insertion

judgment is denoted by Γ ` t1 ⇒ t2 : A which is read as “the

Surface Grady program t1 of type A is translated into the Core

Grady program t2 of type A in context Γ.” �is algorithm is

type directed, and is dependent on the partial metafunction

caster(A,B) that constructs the casting morphism – in Core

Grady – of type A→ B:

caster(A, A) = λ (x : A).x
caster(A, ?) = boxA
caster(?, B) = unboxB
caster((A1 × B1), (A2 × B2)) = caster(A1, A2) × caster(B1, B2)
caster((A1 → B1), (A2 → B2)) = caster(A2, A1) → caster(B1, B2)

�e previous de�nition uses the following derivable functor

rules:

Γ `CG t1 : A1 → A2 Γ `CG t2 : B1 → B2

Γ `CG t1 × t2 : (A1 × B1) → (A2 × B2)

Γ `CG t1 : A2 → A1 Γ `CG t2 : B1 → B2

Γ `CG t1 → t2 : (A1 → B1) → (A2 → B2)

�ey are de�ned as follows:

t1 × t2 = λ (x : A1 × B1).(t1 (fst x), t2 (snd x))
t1 → t2 = λ (x : A1 → B1).λ (y : A2).t2 (x (t1 y))

�e de�nition of caster(A, B) is based on the de�nition of type

consistency.

Lemma 4.1 (Type Consistency and Caster). If A ∼ B, then
Γ `CG caster(A,B) : A→ B.

Proof. �is proof holds by induction on A ∼ B, but is vary

routine, and so we omit its proof. �

x : A ∈ Γ

Γ ` x ⇒ x : A Γ ` 0⇒ 0 : Nat Γ ` triv⇒ triv : Unit

Γ ` t1 ⇒ t2 : ?

Γ ` succ t1 ⇒ succ (unboxNat t2) : Nat

Γ ` t1 ⇒ t2 : Nat

Γ ` succ t1 ⇒ succ t2 : Nat

A1 ∼ A
Γ ` t ⇒ t′ : ? A2 ∼ A t′′

1
= (c1 t′1)

Γ ` t1 ⇒ t′
1

: A1 caster(A1, A) = c1 t′′
2
= (c2 t′2)

Γ, x : Nat ` t2 ⇒ t′
2

: A2 caster(A2, A) = c2 t′′ = (unboxNat t
′)

Γ ` (case t of 0→ t1, (succ x) → t2) ⇒ (case t′′ of 0→ t′′
1
, (succ x) → t′′

2
) : A

A1 ∼ A
Γ ` t ⇒ t′ : Nat A2 ∼ A
Γ ` t1 ⇒ t′

1
: A1 caster(A1, A) = c1 t′′

1
= (c1 t′1)

Γ, x : Nat ` t2 ⇒ t′
2

: A2 caster(A2, A) = c2 t′′
2
= (c2 t′2)

Γ ` (case t of 0→ t1, (succ x) → t2) ⇒ (case t′ of 0→ t′′
1
, (succ x) → t′′

2
) : A

Γ ` t1 ⇒ t3 : A1 Γ ` t2 ⇒ t4 : A2

Γ ` (t1, t2) ⇒ (t3, t4) : A1 × A2

Γ ` t1 ⇒ t2 : ?

Γ ` fst t1 ⇒ fst (unbox(?×?) t2) : ?

Γ ` t1 ⇒ t2 : A1 × A2

Γ ` fst t1 ⇒ fst t2 : A1

Γ ` t1 ⇒ t2 : ?

Γ ` snd t1 ⇒ snd (unbox(?×?) t2) : ?

Γ ` t1 ⇒ t2 : A × B
Γ ` snd t1 ⇒ snd t2 : B

Γ, x : A1 ` t1 ⇒ t2 : A2

Γ ` λ (x : A1).t1 ⇒ λ (x : A1).t2 : A1 → A2

Γ ` t1 ⇒ t′
1

: ?

Γ ` t2 ⇒ t′
2

: A2 caster(A2, ?) = c

Γ ` t1 t2 ⇒ (unbox(?→?) t
′
1
) (c t′

2
) : ?

Γ ` t2 ⇒ t′
2

: A2

Γ ` t1 ⇒ t′
1

: A1 → B A2 ∼ A1 caster(A2, A1) = c

Γ ` t1 t2 ⇒ t′
1
(c t′

2
) : B

Figure 6. Cast Insertion Algorithm

Notice that for each typing rule that uses one of the meta-

functions from Figure 4 there are two cast insertion rules

corresponding to the typing rule.

�e cast insertion algorithm is designed around where ex-

plict casts need to be inserted. �is is accomplished by case

spli�ing on the input to each metafunction from Figure 4 re-

sulting in two rules per elimination rule. �e �rst is the case

where the input to the metafunction is ?, and the second is

the case where the input to the metafunction is a type of the

appropriate structure. For example, in the case of the elimina-

tion rule for function application,→e , from Figure 5, there

are two cast insertion rules, the last two in Figure 6, where the

�rst is when the type of the function, t1, is ?, and the second

when the type of t1 is an arrow type. �e former requires the

type ? to be split into ?→ ? using unbox(?→?) , and a casting

morphism to cast the argument to the appropriate input type.

�e second cast insertion rule only needs to cast the argument

type, because t1 already has a function type.

�e cast insertion algorithm preserves the type of the pro-

gram.

Lemma 4.2 (Cast Insertion Preserves the Type). If Γ `SG t1 :

A and Γ ` t1 ⇒ t2 : A, then Γ `CG t2 : A.

Proof. �is proof holds by induction on Γ `SG t1 : A which

will determine which of the cast insertion rules need to be

considered. At that point, a case split over the input to any

8

metafunctions from Figure 4 used in the typing rule may be

necessary. We omit the proof in the interest of brevity. �

Finally, cast insertion also plays a role when interpreting Sur-

face Grady into the categorical model. �e next section gives

the details.

5 Interpreting Surface and Core Grady in
the Model

Interpreting a programming language into a categorical model

requires three steps. First, the types are interpreted as objects.

�en programs are interpreted as morphisms in the category,

but this is a simpli�cation. Every morphism, f , in a category

has a source object and a target object, we usually denote

this by f : A // B. �us, in order to interpret programs as

morphisms the program must have a source and target. So

instead of interpreting raw terms as morphisms we interpret

terms in their typing context. �at is, we must show how to

interpret every Γ `SG t : A as a morphism t : [[Γ]]
//
[[A]].

�e third step is to show that whenever one program reduces

to another their interpretations are isomorphic in the model.

�is means that whenever Γ `CG t1 : A, Γ `CG t2 : A, and

t1 t2, then [[t1]] = [[t2]] : [[Γ]]
//
[[A]]. �e goal of this

section is to prove these two facts for Surface Grady and Core

Grady. �is section heavily depends on Section 2, Section 3,

and Section 4.

First, we must give the interpretation of types and contexts,

but this interpretation is obvious, because we have been mak-

ing sure to match the names of types and objects throughout

this paper.

De�nition 5.1. Suppose (T ,C, ?, T, split, squash, box,
unbox, error) is a gradual λ-model. �en we de�ne the inter-

pretation of types into C as follows:

[[?]] = ?

[[Unit]] = Unit
[[Nat]] = Nat

[[A1 → A2]] = [[A1]]→ [[A2]]

[[A1 × A2]] = [[A1]] × [[A2]]

We extend this interpretation to typing contexts as follows:

[[·]] = Unit [[Γ, x : A]] = [[Γ]] × [[A]]

�roughout the remainder of this paper we will drop the in-

terpretation symbols around types.

Before we can interpret the typing rules of Surface and

Core Grady we must show how to interpret the type consis-

tency relation from Figure 4. �ese will correspond to casting

morphisms (De�nition 2.7).

Lemma 5.2 (Type Consistency in the Model). Suppose (T ,
C, ?, T, split, squash, box, unbox, error) is a gradual λ-model,
and A ∼ B for some types A and B. �en there are two casting
morphisms c1 : A // B and c2 : B // A.

Proof. �is proof holds by induction on the form A ∼ B using

the morphisms BoxA : A //
? and UnboxA : ?

// A from

Lemma 2.14. Please see Appendix B.3 for the complete proof.

�

Showing that both c1 and c2 exist corresponds to the fact that

A ∼ B is symmetric.

[[Γ1, x : Ai, Γ2 `SG x : Ai]] = πi
[[Γ `SG triv : Unit]] = triv

[[Γ]]

[[Γ `SG 0 : Nat]] = triv
[[Γ]]

; z
[[Γ `SG succ t : Nat]] = [[t]]; c ; succ

where Γ `SG t : A and c : A // Nat
[[Γ `SG case t of 0→ t1, (succ x) → t2 : A]]

= 〈id
[[Γ]]

, [[t]]; c1〉; case[[Γ]],[[A]]
〈[[t1]]; c2, [[t2]]; c3〉

where Γ `SG t : C, Γ `SG t1 : A1, Γ, x : Nat `SG t2 : A2,

c1 : C // Nat, c2 : A1
// A, and c3 : A2

// A
[[Γ `SG (t1, t2) : A1 × A2]] = 〈[[t1]], [[t2]]〉

where Γ `SG t1 : A1 and Γ `SG t2 : A2

[[Γ `SG fst t : A1]] = [[t]]; c ; π1

where Γ `SG t : B and c : B // (A1 × A2)

[[Γ `SG snd t : A2]] = [[t]]; c ; π2

where Γ `SG t : B and c : B // (A1 × A2)

[[Γ `SG λ (x : A).t : A→ B]] = curry([[t]])
where Γ, x : A `SG t : B

[[Γ `SG t1 t2 : B1]] = 〈[[t1]]; c1, [[t2]]; c2〉; appA1,B1

where Γ `SG t1 : C, Γ `SG t2 : A2,

c1 : C // (A1 → B1), and c2 : A2
// A1

[[Γ `CG boxA : A→ ?]] = triv
[[Γ]]

; curry(BoxA)
[[Γ `CG unboxA : ?→ A]] = triv

[[Γ]]
; curry(UnboxA)

Figure 7. Interpretation of Terms

At this point we have everything we need to show our

main result which is that typing in both Surface and Core

Grady, and evaluation in Core Grady can be interpreted into

the categorical model. �e interpretation of terms used in the

following proofs is summarized in Figure 7. We only sum-

marize the interpretation of the Surface Grady programs and

just box and unbox in Core Grady, because the interpretation

of Core Grady is equivalent to the interpretation of Surface

Grady where all casting morphisms have been replaced with

the identity morphism.

�eorem 5.3 (Interpretation of Typing). Suppose (T ,C, ?, T,
split, squash, box, unbox, error) is a gradual λ-model. If Γ `SG
t : A or Γ `CG t : A, then there is a morphism [[t]] : [[Γ]]

// A
in C.

Proof. Both parts of the proof hold by induction on the form

of the assumed typing derivation, and uses most of the results

we have developed up to this point. Please see Appendix B.4

for the complete proof. �

�eorem5.4 (Interpretation of Evaluation). Suppose (T ,C, ?,
T, split, squash, box, unbox, error) is a gradual λ-model. If
Γ `CG t1 : A, Γ `CG t2 : A, and t1 t2, then [[t1]] = [[t2]] :

[[Γ]]
// A.

Proof. �is proof holds by induction on the form of t1 t2,

and uses �eorem 5.3, Lemma 5.2, Corollary B.1, and Lemma B.2.

Please see Appendix B.5 for the complete proof. �

One can see a direct connection between the proof of in-

terpretation of typing (�eorem 5.3) and the cast insertion

algorithm (Figure 6). During the proof – summarized in Fig-

ure 7 – we construct casting morphisms from type consistency

which is essentially the semantic equivalent to caster(A,B).
9

Syntax:

(Atomic Types) T ::= Unit | Nat
(Ground Types) R ::= T | ?→ ?

(values) v ::= λx : A.t
(terms) t ::= · · · | t : A⇒ B

Typing Rules:

· · ·
Γ ` t : A A ∼ B
Γ ` (t : A⇒ B) : B

cast

Reduction Relation:
· · ·

v : T ⇒ T v
id-atom

v : ?⇒ ? v
id-U

v : R ⇒ ?⇒ R v
succeed

R1 , R2

v : R1 ⇒ ?⇒ R2 errorR
2

fail

(v1 : (A1 → B1) ⇒ (A2 → B2)) v2 v1 (v2 : A2 ⇒ A1) : B1 ⇒ B2

→⇒

A ∼ R A , R A , ?

v : A⇒ ? v : A⇒ R ⇒ ?

expand
1

A ∼ R A , R A , ?

v : ?⇒ A v : ?⇒ R ⇒ A
expand

2

Figure 8. �e core casting calculus: λ⇒→

6 Modeling Siek and Taha’s Gradual
λ-Calculus

In this section we show that Siek and Taha’s gradual λ-calculus

[23, 24] can be modeled in a gradual λ-model. �us showing

that other gradual type systems can bene�t from our seman-

tics.

We only consider Siek and Taha’s casting calculus, called

λ⇒→, because their surface language is essentially Surface Grady.

�e complete language speci�cation is summarized in Fig-

ure 8. �e casting calculus λ⇒→ is Core Grady where boxA and

unboxA have been replaced with the explicit cast t : A⇒ B.

In addition, the typing rules for boxA and unboxA have been

replaced with the cast typing rule. �e syntax of types are

the same as for Core Grady; see Figure 1. We do not consider

cartesian products in λ⇒→, but they can be added to λ⇒→ in the

same way that they are de�ned for Core Grady. One interest-

ing aspect of λ⇒→ is that it depends on type consistency, used

in the cast rule, but it is de�ned in the same way as in Figure 5,

however without cartesian products.

�e explicit cast, t : A⇒ B, should be understand as casting

the term t whose type is A to the type B. �us, boxing a term, t,
of type A is de�ned by t : A⇒ ?, and unboxing is de�ned by t :

?⇒ A. Semantically, type consistency corresponds to casting

morphisms, and because their morphisms they compose, but

type consistency is not transitive. However, using the explicit

cast we can compose type consistency. Suppose A ∼ B, B ∼ C,

and Γ ` t : A, then using the rule, cast, of the casting calculus

we may type Γ ` t : A ⇒ B ⇒ C : C. �is composition

is the reason why we interpret type consistency as casting

morphisms in the model.

�e reduction rules for λ⇒→ includes all of the rules from

Core Grady except for the retract rules and the rules for carte-

sian products in addition to the new casting rules given in

Figure 8. It is easy to see that the new casting rules, succeed

and fail, correspond to the Core Grady reduction rules, retract

and raise, from Figure 3. �e other new casting rules are con-

gruence rules to prevent stuck terms and push casting towards

the succeed and fail rules.

We now prove the two main properties for modeling type

systems in a categorical model just as we did in the previous

section. �e interpretation of types and contexts remain the

same as in De�nition 5.1.

�eorem 6.1 (Interpretation of Typing for λ⇒→). Suppose (T ,
C, ?, T, split, squash, box, unbox, error) is a gradual λ-model. If
Γ ` t : A, then there is a morphism [[t]] : [[Γ]]

// A in C.

Proof. �is is a proof by induction on Γ ` t : A. We only show

the case for the explicit cast, because all others are equivalent

to the interpretation of Core Grady.

Case: Γ ` t : A A ∼ B
Γ ` (t : A⇒ B) : B

cast

By the induction hypothesis there is a morphism [[t]] :

[[Γ]]
// A, and by type consistency in the model

(Lemma 5.2) there is a casting morphism c1 : A // B.

So take [[t : A⇒ B]] = [[t]]; c1 : [[Γ]]
// B.

�

�eorem 6.2 (Interpretation of Evaluation for λ⇒→). Suppose
(T ,C, ?, T, split, squash, box, unbox, error) is a gradual λ-
model. If Γ ` t1 : A, Γ ` t2 : A, and t1 t2, then [[t1]] = [[t2]] :

[[Γ]]
// A.

Proof. �is proof holds by induction on the form of t1 t2,

and uses �eorem 6.1, Lemma 5.2, Corollary B.1, and inversion

for typing whose de�nition we omit in the interest of space.

We show only one of the most interesting cases here, but

please see Appendix B.6 for the complete proof.

Case:

v : R ⇒ ?⇒ R v
succeed

By inversion for typing the typing derivation for v :

R ⇒ ?⇒ R is as follows:

Γ ` v : R R ∼ ?

Γ ` v : R ⇒ ? : ? ? ∼ R

Γ ` v : R ⇒ ?⇒ R : R
By the induction hypothesis we have the morphism

[[v]] : [[Γ]]
// R. As we can see we will �rst use

BoxR and then UnboxR based on Corollary B.1. �us,

[[v : R ⇒ ? ⇒ R]] = [[v]];BoxR;UnboxR = [[v]],

because BoxR and UnboxR form a retract (Lemma 2.15).

�

7 �e Gradual Guarantee
We now turn to proving that the gradual guarantee – see

�eorem 7.1 – holds for Grady. �is is the de�ning property

of every gradual type system. In fact, Siek et al. [24] argue

that the gradual guarantee is what separates type systems that

simply combine dynamic and static typing from systems that

not only combine dynamic and static typing, but also allow the

10

Type Precision:

A v ?

?

A v A
re�

A v C B v D
(A→ B) v (C → D)

→

A v C B v D
(A × B) v (C × D)

×

Context Precision:

Γ v Γ
re�

Γ1 v Γ2 A v A′ Γ3 v Γ4

Γ1, x : A, Γ3 v Γ2, x : A′, Γ4
ext

Figure 9. Type and Context Precision

programmer to program in dynamic style without the need to

insert explicit casts. Intuitively, the gradual guarantee states

that a gradually typed program should preserve its type and

behavior when explicit casts are either inserted or removed.

Our proof follows the scheme adopted by Siek et al. [24]

in their proof of the gradual guarantee for the gradual simply

typed λ-calculus. �at is, we prove the exact same results as

they do. We will call a type static if it does not mention the

unknown type. �e �rst step in proving the gradual guarantee

is making rigorous the characterization of when one type is

more static than another type, and when one program is more

dynamic than another program. �is is done by de�ning the

notion of type and term precision.

Type precision is denoted by A v B and is read “the type A
is more precise than type B.” It is de�ned in Figure 9 with its

extension to typing contexts. Type precision is a preorder on

types where as one travels up a chain the types tend toward

the unknown type as opposed to when one travels down a

chain the type tends toward some static type. �is implies that

if A v B, then A is more static than B, but B is more dynamic

than A. �e direction of type precision, and term precision

which will be de�ned next, may seem backward, but one can

consider the unknown type as a universe of types [8], and so,

it is natural to consider it as a top element in the preorder.

Term precision is similar to type precision. It is denoted by

t1 v t2, and is read “the program t1 is more precise than the

program t2.” �at is, t1 is more static while t2 is more dynamic.

Term precision is de�ned in Figure 10 for both Surface Grady

and Core Grady programs. �e de�nition of term precision

for Core Grady includes similar rules de�ning term precision

for Surface Grady in addition to the ones given in Figure 10,

and so we do not repeat them. �e term precision rules for

Core Grady are also annotated with typing contexts to keep

track of the types of free variables. �is is needed because the

rules depend on typing.

Perhaps the most interesting rules are the ones for box,

unbox, and error. Since the job of unboxA t is to specialize

the type of t at a more speci�c type, then Γ ` (unboxA t) v t.
Dually, since the job of boxA t is to generalize the type of t to

?, then Γ ` t v (boxA t).
At this point we can now rigorously state and prove the

gradual guarantee for the Grady languages, where we denote

a diverging term by t ↑.

�eorem 7.1 (Gradual Guarantee).
i. If · `SG t : A and t v t ′, then · `SG t ′ : B and A v B.
ii. Suppose · `CG t : A and · ` t v t ′. �en

Term Precision for Surface Grady:

t v t
re�

t1 v t2
(succ t1) v (succ t2)

succ

t1 v t4 t2 v t5 t3 v t6
(case t1 of 0→ t2, (succ x) → t3) v (case t4 of 0→ t5, (succ x) → t6)

Nat

t1 v t3 t2 v t4
(t1, t2) v (t3, t4)

×i
t1 v t2

(fst t1) v (fst t2)
×e

1

t1 v t2
(snd t1) v (snd t2)

×e
2

t1 v t2 A1 v A2

(λ (x : A1).t) v (λ (x : A2).t2)
→i

t1 v t3 t2 v t4
(t1 t2) v (t3 t4)

→2

Term Precision for Core Grady:

Γ `CG t : ?

Γ ` (unboxA t) v t
box

Γ `CG t : A
Γ ` t v (boxA t)

unbox

Γ `CG t : B A v B
Γ ` errorA v t

error

Figure 10. Term Precision

a. if t ∗ v, then t ′ ∗ v′ and · ` v v v′,
b. if t ↑, then t ′ ↑,
c. if t ′ ∗ v′, then t ∗ v where · ` v v v′, or

t ∗ errorA, and
d. if t ′ ↑, then t ↑ or t ∗ errorA.

Proof. �is result follows from the same proof as [24], and so,

we only give a brief summary. Part i. holds by Lemma 7.2,

and Part ii. follows from simulation of more precise programs

(Lemma 7.3). �

Part one states that one may insert casts into a closed grad-

ual program, t, yielding a less precise program, t ′, and the

program will remain typable, but at a less precise type. �is

part follows from the following generalization:

Lemma 7.2 (Gradual Guarantee Part One). If Γ `SG t : A,
t v t ′, and Γ v Γ′ then Γ′ `SG t ′ : B and A v B.

Proof. �is is a proof by induction on Γ `SG t : A; see Appen-

dix B.8 for the complete proof. �

�e remaining parts of the gradual guarantee follow from the

next result.

Lemma 7.3 (Simulation of More Precise Programs). Suppose
Γ `CG t1 : A, Γ ` t1 v t ′

1
, Γ `CG t ′

1
: A′, and t1 t2. �en

t ′
1
 ∗ t ′

2
and Γ ` t2 v t ′

2
for some t ′

2
.

Proof. �is proof holds by induction on Γ `CG t1 : A1. See

Appendix B.9 for the complete proof. �

�is result simply states that programs may become less pre-

cise by adding or removing casts, but they will behave in an

expected manner.

�e proofs of the previous results require a number of aux-

iliary lemmas that are too numerous to include in this section,

but they can all be found in Appendix A, but we omit most of

their proofs in the interest of space. Each of the proofs of the

previous results take great care in pointing out where these

auxiliary results are used.

11

8 Explicit Casts in Gradual Type Systems
In this section we introduce something that is seemingly small,

but very useful when programming in gradual type systems.

In addition, the authors are not aware of this being pointed

out in the literature.

First, the untyped Y combinator can be de�ned in Surface

Grady as follows:

omega : (? → ?)→ ?

omega = \(x : ? → ?)→ (x x);

fix : (? → ?)→ ?

fix = \(f : ? → ?)→ omega (\(x:?) → f (x x));

�e previous de�nition is a lot cleaner without the explicit

casts, and in the style of programming in the untyped λ-

calculus.

Now suppose we added polymorphism – in Haskell style –

to the Grady languages, then we might want to de�ne a typed

version of �x like the following:

fixT : (X → X)→ X

fixT = \(f: X → X)→ fix (\(y:?)→ (f y)));

However, �xT does not type check. Notice that we must

produce something of type X, but �x (\(y:?)−> (f y)) has

type ? and it will not be implicitly cast.

We can be�er understand the issue by examining the func-

tion application typing rule:

Γ `SG t1 : C A2 ∼ A1

Γ `SG t2 : A2 fun(C) = A1 → B1

Γ `SG t1 t2 : B1

→e

As we can see the only implicit casting that occurs is in the

case of the function, t1, and the argument, t2, but not the actual

result of the application. �us, in order to �x �xT we must

insert an explicit cast, but we have removed the explicit casts

from Surface Grady.

All is not lost, because as it turns out, explicit casts can be

de�ned in Surface Grady:

boxA t = (λ(x : A).x) t
unboxA t = (λ(x : ?).x) t

�eir typing rules are also derivable (proof omi�ed).

Lemma 8.1 (Box and Unbox in Surface Grady). �e following
typing rules are derivable:

Γ `SG t : A
Γ `SG boxA t : ?

box
Γ `SG t : A

Γ `SG unboxA t : A
unbox

Lastly, if we run the cast insertion algorithm (Figure 6) on

boxA t, then it will produce the Core Grady program (λ(x :

A).x) (boxA t) and if we run the algorithm on unboxA t, then

it will produce (λ(x : ?).x) (unboxA t). �is shows that the

Surface Grady explicit casts correspond to the Core Grady

explicit casts. We can now use Surface Grady’s explicit casts

to properly de�ne �xT:

fixT : (X → X)→ X

fixT = \(f: X → X)→ unbox X (fix (\(y:?) → (f y))));

�e problem we outline here is not speci�c to Surface Grady,

but to all gradual type systems. If we program only using

implicit casts, then we are not taking advantage of the full

power of our type system, but if we combine them with explicit

casts, then more programs become typable.

9 Related Work
Abadi et al. [1] combine dynamic and static typing by adding

a new type called Dynamic along with a new case construct

for pa�ern matching on types. We do not add such a case con-

struct, and as a result, show that we can obtain a surprising

amount of expressivity without it. �ey also provide denota-

tional models.

Henglein [10] de�nes the dynamic λ-calculus by adding a

new type Dyn to the simply typed λ-calculus and then adding

primitive casting operations called tagging and check-and-

untag. �ese new operations tag type constructors with their

types. �en untagging checks to make sure the target tag

matches the source tag, and if not, returns a dynamic type

error. �ese operations can be used to build casting coercions

which are very similar to our casting morphisms. We can also

de�ne split, squash, box, and unbox in terms of Henglein’s

casting coercions. We consider this paper as a clari�cation

of Henglein’s system. His core casting calculus can be inter-

preted into our se�ing where we require retracts instead of

full isomorphisms.

10 Future Work
�e categorical model and corresponding type system pre-

sented here sets the stage for a number of interesting lines of

research.

Linear typing has a number of applications in functional

programming [25]. For example, allowing values of linear type

to change the world. �us, it is worthwhile combining gradual

typing with linear typing. Benton [2] showed that the statically

typed λ-calculus can be mixed with the statically typed linear λ-

calculus by taking a symmetric monoidal adjunction between

a cartesian closed category and a symmetric monoidal closed

category called a mixed linear/non-linear model or LNL model.

Gradual λ-models de�ned here make up half of a LNL model

mixing gradual typing with linear typing. We are actively

working on this new combination.

Gradual λ-models correspond to the core language of a

gradual type system. In the future we will investigate the

categorical model for the surface language and a functorial

relationship between this new model and gradual λ-models.

�e most interesting aspect of this model will be how to handle

implicit casting. �en we will be able to state and prove a

model theoretic version of the gradual guarantee. Another

interesting aspect will be in how to deal with type and term

precision in the model.

11 Acknowledgments
�e authors thank Jeremy Siek for his feedback on previous

dra�s of this paper. �e �rst author thanks Ronald Garcia for

his wonderful invited talk at Trends in Functional Program-

ming 2016 which introduced the �rst author to gradual typing

and its open problems. �is paper was typeset with the help

of the amazing O� tool [21].

12

References
[1] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. 1989. Dynamic Typing

in a Statically-typed Language. In Proceedings of the 16th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL ’89).
ACM, New York, NY, USA, 213–227.

[2] P. N. Benton. 1995. A Mixed Linear and Non-Linear Logic: Proofs, Terms

and Models (Extended Abstract). In Selected Papers from the 8th Inter-
national Workshop on Computer Science Logic (CSL ’94). Springer-Verlag,

London, UK, UK, 121–135.

[3] Y. Bres, B. P. Serpe�e, and M. Serrano. 2004. Compiling scheme programs

to .NET common intermediate language. 2nd International Workshop on
.NET Technologies, Pilzen, Czech Republic (May 2004).

[4] Stephen Brookes, Peter W. O’Hearn, and Uday Reddy. 2014. �e Essence

of Reynolds. POPL ’14 (January 2014).

[5] C. Chambers and the Cecil Group. 2004. �e Cecil language: Speci�cation
and rationale. Technical report. Department of Computer Science and

Engineering, University of Washington, Sea�le, Washington,.

[6] Roy L. Crole. 1994. Categories for Types. Cambridge University Press. DOI:
h�p://dx.doi.org/10.1017/CBO9781139172707

[7] R. B. de Oliveira. 2005. �e Boo programming language. (2005). h�p:
//boo.codehaus.org.

[8] Ronald Garcia, Alison M. Clark, and Éric Tanter. 2016. Abstracting Gradual

Typing. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (POPL ’16). ACM, New York,

NY, USA, 429–442.

[9] Kathryn E. Gray, Robert Bruce Findler, and Ma�hew Fla�. 2005. Fine-

grained Interoperability �rough Mirrors and Contracts. SIGPLAN Not. 40,

10 (Oct. 2005), 231–245. DOI:h�p://dx.doi.org/10.1145/1103845.1094830
[10] Fritz Henglein. 1994. Dynamic typing: syntax and proof theory. Science of

Computer Programming 22, 3 (1994), 197 – 230.

[11] W. A. Howard. 1980. �e Formulae-as-Types Notion of Construction. To H.
B. Curry: Essays on Combznatory Logic, Lambda-Calculus, and Formalism
(1980), 479–490.

[12] Khurram A. Jafery and Joshua Dun�eld. 2017. Sums of Uncertainty: Re-

�nements Go Gradual. SIGPLAN Not. 52, 1 (Jan. 2017), 804–817. DOI:
h�p://dx.doi.org/10.1145/3093333.3009865

[13] Joachim Lambek. 1980. From lambda calculus to Cartesian closed cate-

gories. To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism (1980), 376–402.

[14] J. Lambek and P.J. Sco�. 1988. Introduction to Higher-Order Categorical
Logic. Cambridge University Press.

[15] Nico Lehmann and Éric Tanter. 2017. Gradual Re�nement Types. In

Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Program-
ming Languages (POPL 2017). ACM, New York, NY, USA, 775–788. DOI:
h�p://dx.doi.org/10.1145/3009837.3009856

[16] E. Meijer and P. Drayton. 2004. Static typing where possible, dynamic

typing when needed: �e end of the cold war between programming

languages. OOPSLA’04 Workshop on Revival of Dynamic Languages (2004).

[17] Eugenio Moggi. 1989. Notions of Computation and Monads. Information
and Computation 93 (1989), 55–92.

[18] John C. Reynolds. 1995. Using Functor Categories to Generate Intermediate

Code. In Proceedings of the 22Nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL ’95). ACM, New York, NY,

USA, 25–36. DOI:h�p://dx.doi.org/10.1145/199448.199452
[19] Dana Sco�. 1980. Relating �eories of the lambda-Calculus. In To H.B.

Curry: Essays on Combinatory Logic, Lambda-Calculus and Formalism (eds.
Hindley and Seldin). Academic Press, 403–450.

[20] M. Serrano. 2002. Bigloo: a practical Scheme compiler. Inria-Rocquencourt.

[21] Peter Sewell, Francesco Zappa Nardelli, Sco� Owens, Gilles Peskine,

�omas Ridge, Susmit Sarkar, and Rok Strnisa. 2010. O�: E�ective tool

support for the working semanticist. In Journal of Functional Programming
(JFP), Vol. 20. 71–122.

[22] Jeremy Siek and Walid Taha. 2007. Gradual Typing for Objects. In Pro-
ceedings of the 21st European Conference on ECOOP 2007: Object-Oriented
Programming (ECOOP ’07). Springer-Verlag, Berlin, Heidelberg, 2–27. DOI:
h�p://dx.doi.org/10.1007/978-3-540-73589-2 2

[23] Jeremy G Siek and Walid Taha. 2006. Gradual typing for functional lan-

guages. In Scheme and Functional ProgrammingWorkshop (1), Vol. 6. 81–92.

[24] Jeremy G. Siek, Michael M. Vitousek, Ma�eo Cimini, and John Tang

Boyland. 2015. Re�ned Criteria for Gradual Typing. In 1st Summit on
Advances in Programming Languages (SNAPL 2015) (Leibniz International
Proceedings in Informatics (LIPIcs)), �omas Ball, Rastislav Bodik, Shriram

Krishnamurthi, Benjamin S. Lerner, and Greg Morrise� (Eds.), Vol. 32.

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany,

274–293.

[25] Philip Wadler. 1990. Linear types can change the world. In IFIP TC, Vol. 2.

347–359.

[26] Philip Wadler. 1995. Monads for functional programming. Springer Berlin

Heidelberg, Berlin, Heidelberg, 24–52. DOI:h�p://dx.doi.org/10.1007/
3-540-59451-5 2

[27] Philip Wadler. 2015. Propositions As Types. Commun. ACM 58, 12 (Nov.

2015), 75–84. DOI:h�p://dx.doi.org/10.1145/2699407

A Auxiliary Metatheoretic Results
Lemma A.1 (Type Preservation). If Γ `CG t1 : A and t1 t2,
then Γ `CG t2 : A.

Proof. �is proof holds by induction on Γ `CG t1 : A with

further case analysis on the structure the derivation t1
t2. �

Lemma A.2 (Inversion for Type Precision). Suppose A v B.
�en:

i. if A = A1 → B1, then B = ?, or B = A2 → B2, A1 v A2, and
B1 v B2.

ii. if A = A1 × B1, then B = ?, or B = A2 × B2, A1 v A2, and
B1 v B2.

Proof. �is proof holds by induction on the form of A v B. �

Lemma A.3 (Surface Grady Inversion for Term Precision).
Suppose t v t ′. �en:

i. if t = succ t1, then t′ = succ t2 and t1 v t2.
ii. if t = (case t1 of 0→ t2, (succ x) → t3), then
t′ = (case t′

1
of 0 → t′

2
, (succ x) → t′

3
), t1 v t′

1
, t2 v t′

2
, and

t3 v t′
3
.

iii. if t = (t1, t2), then t′ = (t′
1
, t′

2
), t1 v t′

1
, and t2 v t′

2
.

iv. if t = fst t1, then t′ = fst t′
1
and t1 v t′

1
.

v. if t = snd t1, then t′ = snd t′
1
and t1 v t′

1
.

vi. if t = λ (x : A1).t1, then t′ = λ (x : A1).t′
1
and t1 v t′

1
.

vii. if t = (t1 t2), then t′ = (t′
1
t′
2
), t1 v t′

1
, and t2 v t′

2
.

Proof. �is proof holds by induction on the form of t v t ′. �

LemmaA.4 (Inversion for Type Consistency). Suppose A ∼ B.
�en:

i. if A = A1 → B1, then B = ?, or B = A2 → B2, A2 ∼ A1, and
B1 ∼ B2.

ii. if A = A1 → B1, then B = ?, or B = A2 → B2, A2 ∼ A1, and
B1 ∼ B2.

iii. if A = A1 × B1, then B = ?, or B = A2 × B2, A1 ∼ A2, and
B1 ∼ B2.

Proof. �is proof holds by induction on the the form of A ∼
B. �

LemmaA.5 (Symmetry for Type Consistency). If A ∼ B, then
B ∼ A.

Proof. �is holds by induction on the form of A ∼ B. �

Lemma A.6 (Type Precision and Consistency). If A v B, then
A ∼ B.

Proof. �is proof holds by induction on A v B. �

Lemma A.7. If A v B and A v C, then B ∼ C.

Proof. It must be the case that either B v C or C v B, but in

both cases we know B ∼ C by Lemma A.6. �

Lemma A.8 (Transitivity for Type Precision). If A v B and
B v C, then A v C.

13

http://dx.doi.org/10.1017/CBO9781139172707
http://boo.codehaus.org
http://boo.codehaus.org
http://dx.doi.org/10.1145/1103845.1094830
http://dx.doi.org/10.1145/3093333.3009865
http://dx.doi.org/10.1145/3009837.3009856
http://dx.doi.org/10.1145/199448.199452
http://dx.doi.org/10.1007/978-3-540-73589-2_2
http://dx.doi.org/10.1007/3-540-59451-5_2
http://dx.doi.org/10.1007/3-540-59451-5_2
http://dx.doi.org/10.1145/2699407

Proof. �is proof holds by induction on A v B with a case

analysis over B v C. �

Lemma A.9. Suppose A v B. �en
i. If nat(A) = Nat, then nat(B) = Nat.
ii. If list(A) = ListC, then list(B) = ListC′ and C v C′.
iii. If fun(A) = A1 → A2, then fun(B) = A′

1
→ A′

2
, A1 v A′

1
,

and A2 v A′
2
.

Proof. �is proof holds by induction on A v B. �

Lemma A.10.
i. If A1 v A′

1
and A1 ∼ A2 then A′

1
∼ A2.

ii. If A2 v A′
2
and A1 ∼ A2 then A1 ∼ A′

2
.

Proof. Both parts hold by induction on the assumed type

consistency judgment. See Appendix B.7 for the complete

proof. �

Corollary A.11. If A1 v A′
1
, A2 v A′

2
, and A1 ∼ A2 then

A′
1
∼ A′

2
.

Lemma A.12 (Typing for Type Precision). If Γ `SG t1 : A,
t1 v t2, and Γ v Γ′, then Γ′ `SG t2 : B and A v B.

Proof. �is proof holds by induction on Γ `SG t1 : A with a

case analysis over t1 v t2. �

Lemma A.13 (Substitution for Term Precision). If Γ, x : A `
t1 v t2 and Γ ` t ′

1
v t ′

2
, then Γ ` [t ′

1
/x]t1 v [t ′

2
/x]t2.

Proof. �is proof holds by induction on Γ, x : A ` t1 v t2. �

Lemma A.14 (Typeability Inversion).
i. If Γ `CG succ t : A, then Γ `CG t : A′ for some A′.
ii. If Γ `CG case t : Nat of 0 → t1, (succ x) → t2 : A, then
Γ `CG t : A1, Γ `CG t1 : A2, and Γ, x : Nat `CG t2 : A3 for
types A1, A2, A3.

iii. If Γ `CG (t1, t2) : A, then Γ `CG t1 : A1 and Γ `CG t2 : A2

for types A1 and A2.
iv. If Γ `CG fst t : A, then Γ `CG t : A1 for some type A1.
v. If Γ `CG snd t : A, then Γ `CG t : A1 for some type A1.
vi. If Γ `CG λ (x : B).t : A, then Γ, x : B `CG t : A1 for some
type A1.

vii. If Γ `CG t1 t2 : A, then Γ `CG t1 : A1 and Γ `CG t2 : A2 for
types A1 and A2.

Lemma A.15 (Inversion for Term Precision for Core Grady).
Suppose Γ ` t1 v t2. �en either t2 = boxA t1 and Γ `CG t1 : A,
or one of the following holds:

i. If t1 = x, then t2 = x and x : A ∈ Γ.
ii. If t1 = box, then t2 = box.
iii. If t1 = unbox, then t2 = unbox.
iv. If t1 = 0, then t2 = 0.
v. If t1 = triv, then t2 = triv.
vi. If t1 = succ t′

1
, then t2 = succ t′

2
and Γ ` t′

1
v t′

2
.

vii. If t1 = case t′
1

: Nat of 0 → t′
2
, (succ x) → t′

3
, then t2 =

case t′
4

: Nat of 0→ t′
5
, (succ x) → t′

6
, Γ ` t′

1
v t′

4
, Γ ` t′

2
v t′

5
,

and Γ, x : Nat ` t′
3
v t′

6
.

viii. If t1 = (t′
1
, t′

2
), then t2 = (t′

3
, t′

4
), Γ ` t′

1
v t′

3
, and Γ ` t′

2
v

t′
4
.

ix. If t1 = fst t′
1
, then t2 = fst t′

2
and Γ ` t′

1
v t′

2
.

x. If t1 = snd t′
1
, then t2 = snd t′

2
and Γ ` t′

1
v t′

2
.

xi. If t1 = λ (x : A1).t1, then t2 = λ (x : A2).t2 and Γ, x : A2 `

t1 v t2 and A1 v A2.

xii. If t1 = t′
1
t′
2
, then one of the following is true:

a. t2 = t′
3
t′
4
, Γ ` t3 v t′

3
, and Γ ` t4 v t′

4

b. t′
1
= unboxA and t2 = t′

2

xiii. If t1 = unboxA t′
1
, then t2 = t′

1
and Γ `CG t′

1
: ?.

xiv. If t1 = errorA1
, then Γ `CG t2 : A2 and A1 v A2.

Proof. �e proof of this result holds by induction on Γ ` t1 v
t2. �

B Proofs
B.1 Proof of Li�ed Retract (Lemma 2.10)

We only show that b̂oxA;
FunboxA = idA, because the case

when a dynamic type error is raised is similar using the fact

that A and B must have the same skeleton or one could not

compose b̂oxA and
FunboxB. �is implies that A and B only

di�er at an atomic type.

�is is a proof by induction on the form of A.

Case. Suppose A is atomic. �en:

b̂oxA;
FunboxA = boxA; unboxA = idA

Case. Suppose A is ?. �en:

b̂oxA;
FunboxA = b̂ox

?
;
Funbox

?

= id
?
; id

?

= id
?

= idA

Case. Suppose A = A1 → A2. �en:

b̂oxA;
FunboxA = b̂ox(A1→A2) ;

Funbox(A1→A2)

= (FunboxA1
→ b̂oxA2

); (b̂oxA1
→ b̂oxA2

)

= (b̂oxA1
;
FunboxA1

) → (b̂oxA2
;
FunboxA2

)

By two applications of the induction hypothesis we

know the following:

b̂oxA1
;
FunboxA1

= idA1
and b̂oxA2

;
FunboxA2

= idA2

�us, we know the following:

(b̂oxA1
;
FunboxA1

) → (b̂oxA2
;
FunboxA2

) = idA1
→ idA2

= idA1→A2

= idA

Case. Suppose A = A1 × A2. �en:

b̂oxA;
FunboxA = b̂ox(A1×A2) ;

Funbox(A1×A2)

= (b̂oxA1
× b̂oxA2

); (FunboxA1
× b̂oxA2

)

= (b̂oxA1
;
FunboxA1

) × (b̂oxA2
;
FunboxA2

)

By two applications of the induction hypothesis we

know the following:

b̂oxA1
;
FunboxA1

= idA1
and b̂oxA2

;
FunboxA2

= idA2

�us, we know the following:

(b̂oxA1
;
FunboxA1

) × (b̂oxA2
;
FunboxA2

) = idA1
× idA2

= idA1×A2

= idA
14

B.2 Proof of Lemma 2.11
We must show that the function

SA,B : HomC (A,B) // HomS (SA, SB)

is injective.

So suppose f ∈ HomC (A,B) and д ∈ HomC (A,B) such

that Sf = Sд : SA // SB. �en we can easily see that:

Sf = FunboxA; f ; b̂oxB
= FunboxA;д; b̂oxB
= Sд

But, we have the following equalities:

FunboxA; f ; b̂oxB =FunboxA;д; b̂oxB
b̂oxA;

FunboxA; f ; b̂oxB;
FunboxB = b̂oxA;

FunboxA;д; b̂oxB;
FunboxB

idA ; f ; b̂oxB;
FunboxB = idA ;д; b̂oxB;

FunboxB
idA ; f ; idB = idA ;д; idB

f = д

�e previous equalities hold due to Lemma 2.10.

B.3 Proof of Type Consistency in the Model
(Lemma 5.2)

�is is a proof by induction on the form of A ∼ B.

Case:

A ∼ A
re�

Choose c1 = c2 = idA : A // A.

Case:

A ∼ ?

box

Choose c1 = BoxA : A //
? and c2 = UnboxA : ?→ A.

Case:

? ∼ A
unbox

Choose c1 = UnboxA : ?
//A and c2 = BoxA : A→ ?.

Case:

A2 ∼ A1 B1 ∼ B2

(A1 → B1) ∼ (A2 → B2)
→

By the induction hypothesis there exists four casting

morphisms c ′
1

: A1
//A2, c ′

2
: A2

//A1, c ′
3

: B1
//B2,

and c ′
4

: B2
// B1. Choose c1 = c ′

2
→ c ′

3
: (A1 →

B1) // (A2 → B2) and c2 = c ′
1
→ c ′

4
: (A2 →

B2) // (A1 → B1).

Case:

A1 ∼ A2 B1 ∼ B2

(A1 × B1) ∼ (A2 × B2)
×

By the induction hypothesis there exists four casting

morphisms c ′
1

: A1
//A2, c ′

2
: A2

//A1, c ′
3

: B1
//B2,

and c ′
4

: B2
//B1. Choose c1 = c

′
1
×c ′

3
: A1×B1

//A2×

B2 and c2 = c
′
2
× c ′

4
: A2 × B2

// A1 × B1.

B.4 Proof of Interpretation of Types �eorem 5.3
First, we show how to interpret the rules of Surface Grady and

then Core Grady. �is is a proof by induction on Γ `SG t : A.

Case:

x : A ∈ Γ

Γ `SG x : A
var

Suppose without loss of generality that [[Γ]] = A1 ×

· · ·×Ai×· · ·×Aj where Ai = A. We know that j > 0 or

the assumed typing derivation would not hold. �en

take [[x]] = πi : [[Γ]]
// A.

Case:

Γ `SG triv : Unit
Unit

Take [[triv]] = triv
[[Γ]]

: [[Γ]]
// Unit where triv

[[Γ]]

is the unique terminal arrow that exists because C is

cartesian closed.

Case:

Γ `SG 0 : Nat
zero

Take [[0]] = triv
[[Γ]]

; z : [[Γ]]
//Natwhere z : Unit //Nat

exists because C has an NRNO.

Case:

Γ `SG t : A nat(A) = Nat

Γ `SG succ t : Nat
succ

First, by the induction hypothesis there is a morphism

[[t]] : [[Γ]]
// A. Now we have two cases to consider,

one when A = ? and one when A = Nat. Consider the

former. �en interpret [[succ t]] = [[t]]; unboxNat; succ :

[[Γ]]
// Nat where succ : Nat // Nat exists be-

cause C has an NRNO. Similarly, when A = Nat,
[[succ t]] = [[t]]; succ : [[Γ]]

// Nat.

Case:

Γ `SG t : C nat(C) = Nat
Γ `SG t1 : A1 A1 ∼ A
Γ, x : Nat `SG t2 : A2 A2 ∼ A

Γ `SG case t of 0→ t1, (succ x) → t2 : A
Nate

By three applications of the induction hypothesis we

have the following morphisms:

[[t]] : [[Γ]]
// C

[[t1]] : [[Γ]]
// A1

[[t2]] : [[Γ]] × Nat // A2

In addition, we know A1 ∼ A and A2 ∼ A by as-

sumption, and hence, by type consistency in the model

(Lemma 5.2) we know there are casting morphisms

c1 : A1
// A and c2 : A2

// A. Now every gradual

λ-model has an NRNO (De�nition 2.4, De�nition 2.5),

and so, there is a unique morphism:

case
[[Γ]],A〈[[t1]]; c1, [[t2]]; c2〉 : [[Γ]] × Nat // A

At this point we have two cases to consider: one

when C = ? and one when C = Nat. Consider the

former. �en we have the following:

[[case t of 0→ t1, (succ x) → t2]]

= 〈id
[[Γ]]

, [[t]]; unboxNat〉; case[[Γ]],A〈[[t1]]; c1, [[t2]]; c2〉

: [[Γ]]
// A

In the second case we have the following:

[[case t of 0→ t1, (succ x) → t2]]

= 〈id
[[Γ]]

, [[t]]〉; case
[[Γ]],A〈[[t1]]; c1, [[t2]]; c2〉

: [[Γ]]
// A

15

Case:

Γ `SG t1 : A1 Γ `SG t2 : A2

Γ `SG (t1, t2) : A1 × A2

×i

By two applications of the induction hypothesis there

are two morphisms [[t1]] : [[Γ]]
//A and [[t2]] : [[Γ]]

//B.

�en using the fact thatC is cartesian we take [[(t1, t2)]] =
〈[[t1]], [[t2]]〉 : [[Γ]]

// A × B.

Case:

Γ `SG t : B prod(B) = A1 × A2

Γ `SG fst t : A1

×e1

First, by the induction hypothesis there is a morphism

[[t]] : [[Γ]]
// B. Now we have two cases to con-

sider, one when B = ? and one when B = A1 × A2

for some types A1 and A2. Consider the former. We

then know that it must be the case that A1 × A2 =

? × ?. �us, we obtain the following interpretation

[[fst t]] = [[t]]; unbox(?×?) ;π1 : [[Γ]]
//
?. Similarly,

when B = A1 ×A2, then [[fst t]] = [[t]];π1 : [[Γ]]
//A1.

Case:

Γ `SG t : B prod(B) = A1 × A2

Γ `SG snd t : A2

×e2

First, by the induction hypothesis there is a morphism

[[t]] : [[Γ]]
// B. Now we have two cases to con-

sider, one when B = ? and one when B = A1 × A2

for some types A1 and A2. Consider the former. We

then know that it must be the case that A1 × A2 =

? × ?. �us, we obtain the following interpretation

[[snd t]] = [[t]]; unbox(?×?) ;π2 : [[Γ]]
//
?. Similarly,

when B = A1×A2, then [[snd t]] = [[t]];π2 : [[Γ]]
//A2.

Case:

Γ, x : A `SG t : B
Γ `SG λ(x : A).t : A→ B

→i

By the induction hypothesis there is a morphism [[t]] :

[[Γ]] × A // B. �en take [[λ(x : A).t]] = curry([[t]]) :

[[Γ]]
// (A→ B), where

curry : HomC (X × Y ,Z) // HomC (X ,Y → Z)

exists because C is closed.

Case:

Γ `SG t1 : C A2 ∼ A1

Γ `SG t2 : A2 fun(C) = A1 → B1

Γ `SG t1 t2 : B1

→e

By the induction hypothesis there are two morphisms

[[t1]] : [[Γ]]
// C and [[t2]] : [[Γ]]

// A2. In addition,

by assumption we know that A2 ∼ A1, and hence, by

type consistency in the model (Lemma 5.2) there are

casting morphisms c1 : A2
// A1 and c2 : A1

// A2.

We have two cases to consider, one when C = ? and

one when C = A1 → B1. Consider the former. �en

we have the interpretation:

[[t1 t2]] = 〈[[t1]]; unbox(?→?) , [[t2]]; c1〉; appA1,B1

:

[[Γ]]
// B1

Similarly, for the case when C = A1 → B1 we have the

interpretation:

[[t1 t2]] = 〈[[t1]], [[t2]]; c1〉; appA1,B1

: [[Γ]]
// B1

Note that appA1,B1

: (A1 → B1) × A1
// B1 exists

because the model is cartesian closed.

Next we turn to Core Grady, but we do not show every rule,

because it is similar to what we have already shown above

except without casting morphism, and so we only show the

case for the box and unbox rules, and the error rule.

�e �rst two cases use the well-known bijection:

HomC (A,B) � HomC (Unit × A,B)
� HomC (Unit,A→ B)

When f ∈ HomC (A,B), then we denote by curry(f), the

morphism curry(f) ∈ HomC (Unit,A→ B).

Case:

Γ `CG boxA : A→ ?

box

We have the following interpretation:

[[boxA]] = triv
[[Γ]]

; curry(BoxA) : [[Γ]]
// (A→ ?)

Case:

Γ `CG unboxA : ?→ A
unbox

We have the following interpretation:

[[unboxA]]

= triv
[[Γ]]

; curry(UnboxA)
: [[Γ]]

// (?→ A)

Case:

Γ `CG errorA : A
error

We have the following interpretation:

[[errorA]] = error
[[Γ]],A : [[Γ]]

// A

B.5 Proof of Interpretation of Evaluation
(�eorem 5.4)

�is proof requires the following corollary to Lemma 5.2, and

the following lemma called inversion for typing.

CorollaryB.1. Suppose (T ,C, ?, T, split, squash, box, unbox)
is a gradual λ-model. �en we know the following:

i. If A ∼ A, then c1 = c2 = idA : A // A.
ii. If A ∼ ?, then there are casting morphisms:

c1 = BoxA : A // ?
c2 = UnboxA : ? // A

iii. If ? ∼ A, then there are casting morphisms:

c1 = UnboxA : ? // A
c2 = BoxA : A // ?

iv. If A1 → B1 ∼ A2 → B2, then there are casting mor-
phisms:

c = c1 → c2 : (A1 → B1) // (A2 → B2)
c ′ = c3 → c4 : (A2 → B2) // (A1 → B1)

where c1 : A2
// A1 and c2 : B1

// B2, and c3 :

A1
// A2 and c4 : B2

// B1.
16

v. If A1×B1 ∼ A2×B2, then there are casting morphisms:

c = c1 × c2 : (A1 × B1) // (A2 × B2)
c ′ = c3 × c4 : (A2 × B2) // (A1 × B1)

where c1 : A1
// A2 and c2 : B1

// B2, and c3 :

A2
// A1 and c4 : B2

// B1.

Proof. �is proof holds by the construction of the casting

morphisms from the proof of the previous result, and the fact

that the type consistency rules are unique for each type. �

Lemma B.2 (Inversion for Typing).
i. If Γ `CG succ t : A, then A = Nat and Γ `CG t : Nat.
ii. If Γ `CG case t : Nat of x → t1, (succ x) → t2 : A, then

Γ `CG t : Nat, Γ `CG t1 : A, and Γ, x : Nat `CG t2 : A.
iii. If Γ `CG (t1, t2) : A, then there are types B and C, such

that, A = B × C, Γ `CG t1 : B, and Γ `CG t2 : C.
iv. If Γ `CG fst t : A, then there is a type B, such that,

Γ `CG t : A × B.
v. If Γ `CG snd t : A, then there is a type B, such that,

Γ `CG t : B × A.
vi. If Γ `CG λ(x : A).t : A, then there are types B and C,

such that, A = B→ C and Γ, x : B `CG t : C.
vii. If Γ `CG t1 t2 : A, then there is a type B, such that,

Γ `CG t1 : B→ A and Γ `CG t2 : B.

Proof. Each case of this proof holds trivially by induction

on the assumed typing derivation, because there is only one

typing rule per term constructor. �

�is proof holds by induction on the form of t1 t2 with

an appeal to inversion for typing on Γ `SG t1 : A and Γ `SG
t2 : A. We only show the cases for the retract rules, and

the error rule, because the others are well-known to hold

within any cartesian closed category; see [13] or [6]. We

will routinely use the interpretation given in the proof of

�eorem 5.3 and summarized in Figure 7 throughout this proof

without mention.

�e cases to follow will make use of the following result,

essentially the semantic equivalent to an instance of the β-rule,

that holds in any cartesian closed category:

〈trivC ; curry(д), f 〉; appA,B
= 〈trivC, f 〉; (curry(д) × idA); appA,B
= 〈trivC, f 〉; snd;д
= f ;д

where д : A // B and f : C // A. Note that appA,B : (A→
B) × A // B exists, because C is a cartesian closed category.

Case:

unboxA (boxA t) t
retract

We know by assumption that Γ `CG unboxA (boxA t) :

A and Γ `CG t : A. By interpretation for typing (�eo-

rem 5.3) and using the above equation we obtain the

following morphisms:

[[boxA t]]
= 〈triv[[Γ]]; curry(BoxA), [[t]]〉; appA,?
= [[t]];BoxA
: [[Γ]]

//
?

[[unboxA (boxA t)]]
= 〈triv[[Γ]]; curry(UnboxA), [[boxA t]]〉; app

?,A
= [[boxA t]];UnboxA
= [[t]];BoxA;UnboxA
: [[Γ]]

// A
where [[t]] : [[Γ]]

// A. At this point it is easy to see

that [[t]];BoxA;UnboxA = [[t]]; idA = [[t]]. �us, we

obtain our result.

Case:

A , B
unboxA (boxB t) errorA

raise

�is case follows similarly to the previous case. Us-

ing the semantic β-equation given above, then we will

obtain [[t]];BoxB;UnboxA = error
[[Γ]],A using the er-

ror axioms from the de�nition of the gradual λ-model

(De�nition 2.5).

Case:

x : B `CG E[x] : A
E[errorB] errorA

error

�is case follows from a case analysis over the struc-

ture of E, and then using the error axioms from the

de�nition of the gradual λ-model (De�nition 2.5).

B.6 Proof of Interpretation of Evaluation for λ⇒→
(�eorem 6.2)

�is proof holds by induction on the form of t1 t2, but

must appeal to inversion for typing. We only show the cases

for the casting rules, because the others are well-known to

hold within any cartesian closed category; see [13] or [6]. We

will routinely use �eorem 5.3 throughout this proof without

mention.

Case.

v : T ⇒ T v
id-atom

We know by assumption that Γ ` v : T , in addition, we

always know that T ∼ T . �us, We have a morphism

[[v : T ⇒ T]] = [[v]]; c1 : [[Γ]]
// T based on the

interpretation of typing. It must be the case that c1 =

idT : T // T by Corollary B.1. �erefore, [[v : T ⇒
T]] = [[v]]; c1 = [[v]] : [[Γ]]

// T .

Case.

v : ?⇒ ? v
id-U

Similar to the previous case.

Case:

v : R ⇒ ?⇒ R v
succeed

By inversion for typing the typing derivation for v :

R ⇒ ?⇒ R is as follows:

17

Γ ` v : R R ∼ ?

Γ ` v : R ⇒ ? : ? ? ∼ R

Γ ` v : R ⇒ ?⇒ R : R
By the induction hypothesis we have the morphism

[[v]] : [[Γ]]
// R. As we can see we will �rst use

BoxR and then UnboxR based on Corollary B.1. �us,

[[v : R ⇒ ? ⇒ R]] = [[v]];BoxR;UnboxR = [[v]],

because BoxR and UnboxR form a retract (Lemma 2.15).

Case:

A = (A1 → B1) B = (A2 → B2)

(v1 : A⇒ B) v2 v1 (v2 : A2 ⇒ A1) : B1 ⇒ B2

→⇒

First, by inversion for typing we know Γ ` v1 : A1 →

B1, Γ ` v2 : A2, and (A1 → B1) ∼ (A2 → B2). �en by

the induction hypothesis and Corollary B.1 we have

the following morphisms:

[[v1]] : [[Γ]]
// (A1 → B1)

[[v2]] : [[Γ]]
// A2

c1 : A2
// A1

c2 : B1
// B2

We must show the following:

[[(v1 : (A1 → B1) ⇒ (A2 → B2)) v2]]

= 〈[[v1]]; (c1 → c2), [[v2]]〉; appA2,B2

= 〈[[v1]], [[v2]]; c1〉; appA1,B1

; c2

�e previous equation holds as follows where we give

properties in between the equations for the reason why

they hold:

〈[[v1]], [[v2]]; c1〉; appA1,B1

; c2

(Cartesian Products)

= 〈[[v1]], [[v2]]〉; (idA1→B1
× c1); appA1,B1

; c2

(Naturality)

= 〈[[v1]], [[v2]]〉; (idA1→B1
× c1);

((idA1
→ c2) × idA1

); appA1,B2

(Closure)

= 〈[[v1]], [[v2]]〉; (curry((idA1→B1
× c1);

((idA1
→ c2) × idA1

); appA1,B2

) × idA2
); appA2,B2

(Closure)

= 〈[[v1]], [[v2]]〉; ((c1 → c2) × idA2
); appA2,B2

(Cartesian Products)

= 〈[[v1]]; (c1 → c2), [[v2]]; idA2
〉; appA2,B2

= 〈[[v1]]; (c1 → c2), [[v2]]〉; appA2,B2

Case.

A ∼ R A , R A , ?

v : A⇒ ? v : A⇒ R ⇒ ?

expand1

We know by assumption that Γ ` v : A. By the induc-

tion hypothesis and Lemma 5.2 we have the following

morphisms:

[[v]] : [[Γ]]
// A

c1 : A // R

We must show the following:

[[v : A⇒ ?]] = [[v]];BoxA
= [[v]]; c1;BoxR

However, notice that given the constraints above, it

must be the case that R = T or R = ? → ?. If the

former is true, then A = T by the de�nition of con-

sistency and the constraints above, but this implies

that c1 = idT by Corollary B.1, and the result follows.

However, consider the case when R = ? → ?. �en

given the constraints above A = A1 → A2. �us,

c1 = (unboxA1
→ boxA2

) by Corollary B.1. In addi-

tion, it must be the case that BoxR = squash(?→?) by

the de�nition of BoxR , but by inspection of the de�ni-

tion of BoxA we have the following:

BoxA = Box(A1→A2)
= (unboxA1

→ boxA2
); squash(?→?)

= c1; squash(?→?)
= c1;BoxR

�us, we obtain our result.

Case.

A ∼ R A , R A , ?

v : ?⇒ A v : ?⇒ R ⇒ A
expand2

�is case is similar to the previous case, except that

the interpretation uses UnboxA and UnboxR instead

of BoxA and BoxR .

B.7 Proof of Congruence of Type Consistency Along
Type Precision (Lemma A.10)

Proof. �e proofs of both parts are similar, and so we only

show a few cases of the �rst part, but the omi�ed cases follow

similarly.

Proof of part one. �is is a proof by induction on the form

of A1 v A′
1
.

Case:

A1 v ?

?

In this case A′
1
= ?. Suppose A1 ∼ A2. �en it su�ces

to show that ? ∼ A2, but this easily follows.

Case:

A v C B v D

(A→ B) v (C → D)
→

In this case A1 = A → B and A′
1
= C → D. Suppose

A1 ∼ A2. �en by inversion for type consistency it

must be the case that either A2 = ?, or A2 = A′ → B′,
A ∼ A′, and B ∼ B′.

Consider the former. �en it su�ces to show that

A′
1
∼ ?, but this easily follows.

Consider the case whenA2 = A′ → B′, A ∼ A′, and

B ∼ B′. It su�ces to show that (C → D) ∼ (A′ → B′)
which follows from A′ ∼ C and D ∼ B′. �us, it

su�ces to show that la�er. By assumption we know

the following:

A v C and A ∼ A′

B v D and B ∼ B′

Now by two applications of the induction hypothesis

we obtain C ∼ A′ and D ∼ B′. By symmetry the former

implies A′ ∼ C and we obtain our result.

�

18

B.8 Proof of Gradual Guarantee Part One
(Lemma 7.2)

�is is a proof by induction on Γ `SG t : A. We only show the

most interesting cases, because the others follow similarly.

Case:

x : A ∈ Γ

Γ `SG x : A
var

In this case t = x. Suppose t v t ′. �en it must be

the case that t ′ = x. If x : A ∈ Γ, then there is a type

A′ such that x : A′ ∈ Γ′ and A v A′. �us, choose

B = A′ and the result follows.

Case:

Γ `SG t1 : A′ nat(A′) = Nat

Γ `SG succ t1 : Nat
succ

In this case A = Nat and t = succ t1. Suppose t v t ′

and Γ v Γ′. �en by de�nition it must be the case that

t ′ = succ t2 where t1 v t2. By the induction hypothesis

Γ′ `SG t2 : B′ where A′ v B′. Since nat(A′) = Nat and

A′ v B′, then it must be the case that nat(B′) = Nat
by Lemma A.9. At this point we obtain our result by

choosing B = Nat, and reapplying the rule above.

Case:

Γ `SG t1 : C nat(C) = Nat
Γ `SG t2 : A1 A1 ∼ A
Γ, x : Nat `SG t3 : A2 A2 ∼ A

Γ `SG case t1 of 0→ t2, (succ x) → t3 : A
Nate

In this case t = case t1 of 0 → t2, (succ x) → t3. Sup-

pose t v t ′ and Γ v Γ′. �is implies that

t ′ = case t ′
1
of 0 → t ′

2
, (succ x) → t ′

3
such that t1 v t ′

1
,

t2 v t ′
2
, and t3 v t ′

3
. Since Γ v Γ′ then (Γ, x : Nat) v

(Γ′, x : Nat). By the induction hypothesis we know

the following:

Γ′ `SG t ′
1

: C ′ for C v C ′

Γ′ `SG t2 : A′
1

for A1 v A′
1

Γ′, x : Nat `SG t3 : A′
2

for A2 v A′
2

By assumption we know that A1 ∼ A, A2 ∼ A, and

Γ v Γ′. By the induction hypothesis we know that

A1 v A′
1

and A2 v A′
2
, so by using Lemma A.10 we

may obtain that A′
1
∼ A and A′

2
∼ A. At this point

choose B = A and we obtain our result by reapplying

the rule.

Case:

Γ `SG t1 : A1 Γ `SG t2 : A2

Γ `SG (t1, t2) : A1 × A2

×i

In this case A = A1 × A2 and t = (t1, t2). Suppose

t v t ′ and Γ v Γ′. �is implies that t ′ = (t ′
1
, t ′

2
) where

t1 v t ′
1

and t2 v t ′
2
.

By the induction hypothesis we know:

Γ′ `SG t ′
1

: A′
1

and A1 v A′
1

Γ′ `SG t ′
2

: A′
2

and A2 v A′
2

�en choose B = A′
1
× A′

2
and the result follows by

reapplying the rule above and the fact that (A1×A2) v
(A′

1
× A′

2
).

Case:

Γ, x : A1 `SG t1 : B1

Γ `SG λ(x : A1).t1 : A1 → B1

→i In this case A1 →

B2 and t = λ(x : A1).t1. Suppose t v t ′ and Γ v Γ′.
�en it must be the case that t ′ = λ(x : A2).t2, t1 v t2,

and A1 v A2. Since Γ v Γ′ and A1 v A2, then (Γ, x :

A1) v (Γ′, x : A2) by de�nition. �us, by the induction

hypothesis we know the following:

Γ′, x : A2 `SG t ′
1

: B2 and B1 v B2

Choose B = A2 → B2 and the result follows by reap-

plying the rule above and the fact that (A1 → B1) v
(A2 → B2).

Case:

Γ `SG t1 : C fun(C) = A1 → B1

Γ `SG t2 : A2 A2 ∼ A1

Γ `SG t1 t2 : B1

→e

In this case A = B1 and t = t1 t2. Suppose t v t ′ and

Γ v Γ′. �e former implies that t ′ = t ′
1
t ′
2

such that

t1 v t ′
1

and t2 v t ′
2
. By the induction hypothesis we

know the following:

Γ′ `SG t ′
1

: C ′ for C v C ′

Γ′ `SG t ′
2

: A′
2

for A2 v A′
2

We know by assumption that A2 ∼ A1. Since C v C ′

and fun(C) = A1 → B1, then fun(C ′) = A′
1
→ B′

1

where A1 v A′
1

and B1 v B′
1

by Lemma A.9. Further-

more, we know A2 ∼ A1 and A2 v A′
2

and A1 v A′
1
,

then we know A′
2
∼ A′

1
by Corollary A.11. So choose

B = B′
1
. �en reapply the rule above and the result

follows, because B1 v B′
1
.

B.9 Proof of Simulation of More Precise Programs
(Lemma 7.3)

�is is a proof by induction on Γ `CG t1 : A1. We only give the

most interesting cases. All others follow similarly. �rough-

out the proof we implicitly make use of typability inversion

(Lemma A.14) when applying the induction hypothesis.

Case:

Γ `CG t : Nat

Γ `CG succ t : Nat
succ

In this case t1 = succ t and A = Nat. Suppose Γ `CG
t ′
1

: A′. By inversion for term precision we must con-

sider the following cases:

i. t ′
1
= succ t ′ and Γ ` t v t ′

ii. t ′
1
= boxNat t1 and Γ `CG t1 : Nat

Proof of part i. Suppose t ′
1
= succ t ′, Γ ` t v t ′,

and t1 t2. �en t2 = succ t ′′ and t t ′′. �en by

the induction hypothesis we know that there is some

t ′′′ such that t ′ ∗ t ′′′ and Γ ` t ′′ v t ′′′. Choose

t ′
2
= succ t ′′′ and the result follows.

Proof of part ii. Suppose t ′
1
= boxNat t1, Γ `CG t1 :

Nat, and t1 t2. �en choose t ′
2
= boxNat t2, and the

result follows, because we know by type preservation

that Γ `CG t2 : Nat, and hence, Γ ` t2 v t ′
2
.

19

Case:

Γ `CG t : Nat
Γ `CG t3 : A Γ, x : Nat `CG t4 : A

Γ `CG case t : Nat of 0→ t3, (succ x) → t4 : A
Nate

In this case t1 = case t : Nat of 0 → t3, (succ x) →
t4. Suppose Γ `CG t ′

1
: A′. �en inversion of term

precision implies that one of the following must hold:

i. t ′
1
= case t ′ : Nat of 0 → t ′

3
, (succ x) → t ′

4
, Γ ` t v

t ′, Γ ` t3 v t ′
3
, and Γ, x : Nat ` t4 v t ′

4

ii. t ′
1
= boxA t1 and Γ `CG t1 : A

Proof of part i. Suppose t ′
1
= case t ′ : Nat of 0 →

t ′
3
, (succ x) → t ′

4
, Γ ` t v t ′, Γ ` t3 v t ′

3
, and Γ, x :

Nat ` t4 v t ′
4
.

We case split over t1 t2.

Case. Suppose t = 0 and t2 = t3. Since Γ ` t1 v
t ′
1

we know that it must be the case that t ′ = 0

and t ′
1
 t ′

3
by inversion for term precision or

t ′
1

would not be typable which is a contradiction.

�us, choose t ′
2
= t ′

3
and the result follows.

Case. Suppose t = succ t ′′ and t2 = [t ′′/x]t4. Since

Γ ` t1 v t ′
1

we know that t ′ = succ t ′′′, or t ′
1

would

not be typable, and Γ ` t ′′ v t ′′′ by inversion

for term precision. In addition, t ′
1
 [t ′′′/x]t ′

4
.

Choose t2 = [t ′′′/x]t ′
4
. �en it su�ces to show

that Γ ` [t ′′/x]t4 v [t ′′′/x]t ′
4

by substitution for

term precision (Lemma A.13).

Case. Suppose a congruence rule was used. �en

t2 = case t ′′ : Nat of 0 → t ′′
3
, (succ x) → t ′′

4
. �is

case will follow straightforwardly by induction and

a case split over which congruence rule was used.

Proof of part ii. Suppose t ′
1
= boxA t1, Γ `CG t1 : A,

and t1 t2. �en choose t ′
2
= boxA t2, and the result

follows, because we know by type preservation that

Γ `CG t2 : A, and hence, Γ ` t2 v t ′
2
.

Case:

Γ `CG t : A × B

Γ `CG fst t : A
×e1

In this case t1 = fst t. Suppose Γ ` t1 v t ′
1

and Γ `CG
t ′
1

: A′. �en inversion for term precision implies that

one of the following must hold:

i. t ′
1
= fst t ′ and Γ ` t v t ′

ii. t ′
1
= boxA t1 and Γ `CG t1 : A

We only consider the proof of part i, because the

other follows similarly to the previous case. Case split

over t1 t2.

Case. Suppose t = (t ′
3
, t ′′

3
) and t2 = t ′

3
. By inver-

sion for term precision it must be the case that t ′ =
(t ′

4
, t ′′

4
) because Γ ` t1 v t ′

1
or else t ′

1
would not be

typable. In addition, this implies that Γ ` t ′
3
v t ′

4

and Γ ` t ′′
3
v t ′′

4
. �us, t ′

1
 t ′

4
. �us, choose

t ′
2
= t ′

4
and the result follows.

Case. Suppose a congruence rule was used. �en

t2 = fst t ′′. �is case will follow straightforwardly

by induction and a case split over which congru-

ence rule was used.

Case:

Γ, x : A1 `CG t : A2

Γ `CG λ(x : A1).t : A1 → A2

→i

In this case t1 = λ(x : A1).t and A = A1 → A2.

Suppose Γ ` t1 v t ′
1

and Γ `CG t ′
1

: A′. �en inversion

of term precision implies that one of the following

must hold:

i. t ′
1
= λ(x : A′

1
).t ′

ii. t ′
1
= boxA t1 and Γ `CG t1 : A

We only consider the proof of part i. �e reduction

relation does not reduce under λ-expressions. Hence,

t2 = t1, and thus, choose t ′
2
= t ′

1
, and the case trivially

follows.

Case:

Γ `CG t3 : A1 → A2 Γ `CG t4 : A1

Γ `CG t3 t4 : A2

→e

In this case t1 = t3 t4. Suppose Γ ` t1 v t ′
1

and Γ `CG
t ′
1

: A′. �en by inversion for term prevision we know

one of the following is true:

i. t ′
1
= t ′

3
t ′
4
, Γ ` t3 v t ′

3
, and Γ ` t4 v t ′

4

ii. t ′
1
= boxA2

t1 and Γ `CG t1 : A
iii. t3 = unboxA2

, t ′
1
= t4, and Γ `CG t4 : ?

Proof of part i. Suppose t ′
1
= t ′

3
t ′
4
, Γ ` t3 v t ′

3
, and

Γ ` t4 v t ′
4
.

We case split on the from of t1 t2.

Case. Suppose t3 = λ(x : A1).t5 and t2 = [t4/x]t5.

�en by inversion for term precision we know that

t ′
3
= λ(x : A′

1
).t ′

5
and Γ, x : A′

2
` t5 v t ′

5
, because

Γ ` t3 v t ′
3

and the requirement that t ′
1

is typable.

Choose t ′
2
= [t ′

4
/x]t ′

5
and it is easy to see that

t ′
1
 [t ′

4
/x]t ′

4
. We know that Γ, x : A′

2
` t5 v t ′

5

and Γ ` t4 v t ′
4
, and hence, by Lemma A.13 we

know that Γ ` [t4/x]t5 v [t ′
4
/x]t ′

5
, and we obtain

our result.

Case. Suppose t3 = unboxA, t4 = boxA t5, and

t2 = t5. �en by inversion for term prevision t ′
3
=

unboxA, t ′
4
= boxA t ′

5
, and Γ ` t5 v t ′

5
. Note that

t ′
4
= boxA t ′

5
and Γ ` t5 v t ′

5
hold even though

there are two potential rules that could have been

used to construct Γ ` t4 v t ′
4
. Choose t ′

2
= t ′

5
and

it is easy to see that t ′
1
 t ′

5
. �us, we obtain our

result.

Case. Suppose t3 = unboxA, t4 = boxB t5, A ,
B, and t2 = errorB. �en t ′

3
= unboxA and t ′

4
=

boxB t ′5. Choose t ′
2
= errorB and it is easy to see

that t ′
1
 t ′

5
. Finally, we can see that Γ ` t2 v t ′

2

by re�exivity.

Case. Suppose a congruence rule was used. �en

t2 = t ′
5
t ′
6
. �is case will follow straightforwardly

by induction and a case split over which congru-

ence rule was used.

Proof of part ii. We know that t1 = t3 t4. Suppose

20

t ′
1
= boxA2

t1 and Γ `CG t1 : A. If t1 t2, then t ′
1
=

(boxA2
t1) (boxA2

t2). �us, choose t ′
2
= boxA2

t2.

Proof of part iii. We know that t1 = t3 t4. Suppose

t3 = unboxA2
, t ′

1
= t4, and Γ `CG t4 : ?. �en t1 =

unboxA2
t4. We case split over t1 t2. We have three

cases to consider.

Suppose t4 = boxA2
t5 and t2 = t5. �en choose t ′

2
=

t4 = t ′
1
, and we obtain our result.

Suppose t4 = boxA3
t5, A2 , A3, and t2 = errorA2

.

�en choose t ′
2
= t4 = t ′

1
, and we obtain our result.

Suppose a congruence rule was used. �en t2 = t3 t ′
4
.

�is case will follow straightforwardly by induction.

21

	Abstract
	1 Introduction
	1.1 Overview

	2 The Categorical Model
	3 Core Grady
	4 Surface Grady
	5 Interpreting Surface and Core Grady in the Model
	6 Modeling Siek and Taha's Gradual -Calculus
	7 The Gradual Guarantee
	8 Explicit Casts in Gradual Type Systems
	9 Related Work
	10 Future Work
	11 Acknowledgments
	References
	A Auxiliary Metatheoretic Results
	B Proofs
	B.1 Proof of Lifted Retract (Lemma 2.10)
	B.2 Proof of Lemma 2.11
	B.3 Proof of Type Consistency in the Model (Lemma 5.2)
	B.4 Proof of Interpretation of Types Theorem 5.3
	B.5 Proof of Interpretation of Evaluation (Theorem 5.4)
	B.6 Proof of Interpretation of Evaluation for (Theorem 6.2)
	B.7 Proof of Congruence of Type Consistency Along Type Precision (Lemma A.10)
	B.8 Proof of Gradual Guarantee Part One (Lemma 7.2)
	B.9 Proof of Simulation of More Precise Programs (Lemma 7.3)

