Exploring the Reach of Hereditary Substitution

Harley Eades and Aaron Stump

Computer Science The University of Iowa

TYPES 2011

Introduction

- Tait-Girard's reducibility is the most often used proof technique for proving normalization.
 - · Complex.
 - Type soundness theorem requires universal quantification over all substitutions.
 - Requires mutual recursion.
- Hereditary substitution shows promise of being less complex than reducibility.
 - No universal quantification needed in the statement of the type soundness theorem.
 - In general not dependent on mutual recursion.
 - One major draw back: we are unsure what systems hereditary substitution can be applied to.
 - This is the focus of our work.

Introduction

- Stratified System F⁺.
- The hereditary substitution function.
 - Well-founded ordering on types.
 - Properties of the hereditary substitution function.
- Concluding normalization.
 - The interpretation of types.
 - Substitution for the interpretation of types.
 - Type soundness.

- SSF⁺ is an extension of the system Stratified System F first analyzed by D. Leivant and N. Danner.
- Syntax for kinds, types, and terms:

$$\begin{array}{lll} \mathcal{K} & := & *_0 \mid *_1 \mid \dots \\ \phi & := & \mathcal{X} \mid \phi \rightarrow \phi \mid \forall \mathcal{X} : \mathcal{K}.\phi \mid \phi + \phi \\ t & := & \mathcal{X} \mid \lambda \mathcal{X} : \phi.t \mid t \mid \Lambda \mathcal{X} : \mathcal{K}.t \mid t[\phi] \mid \mathit{inl}(t) \mid \mathit{inr}(t) \mid \mathsf{case} \; t \; \mathsf{of} \; \mathcal{X}.t.x.t \end{array}$$

• Kind assignment rules:

$$\frac{\Gamma \vdash \phi_{1} : *_{p} \qquad \Gamma \vdash \phi_{2} : *_{q}}{\Gamma \vdash \phi_{1} \rightarrow \phi_{2} : *_{max(p,q)}} \qquad \frac{\Gamma, X : *_{q} \vdash \phi : *_{p}}{\Gamma \vdash \forall X : *_{q}.\phi : *_{max(p,q)+1}}$$

$$\frac{\Gamma \vdash \phi_{1} : *_{p} \qquad \Gamma \vdash \phi_{2} : *_{q}}{\Gamma \vdash \phi_{1} + \phi_{2} : *_{max(p,q)}} \qquad \frac{\Gamma(X) = *_{p}}{\Gamma \vdash X : *_{q}}$$

• The type assignment rules:

$$\begin{array}{c|c} \Gamma(x) = \phi \\ \frac{\Gamma \ Ok}{\Gamma \vdash x : \phi} & \frac{\Gamma, x : \phi_1 \vdash t : \phi_2}{\Gamma \vdash \lambda x : \phi_1 . t : \phi_1 \to \phi_2} & \frac{\Gamma \vdash t_1 : \phi_1 \to \phi_2}{\Gamma \vdash t_2 : \phi_1} \\ \\ \frac{\Gamma, X : *_I \vdash t : \phi}{\Gamma \vdash \Lambda X : *_I . t : \forall X : *_I . \phi} & \frac{\Gamma \vdash t : \forall X : *_I . \phi_1}{\Gamma \vdash t[\phi_2] : [\phi_2 / X] \phi_1} \\ \\ \frac{\Gamma \vdash t : \phi_1}{\Gamma \vdash \phi_2 : *_P} & \frac{\Gamma \vdash t : \phi_2}{\Gamma \vdash \phi_1 : *_P} & \frac{\Gamma \vdash t : \phi_1 + \phi_2}{\Gamma, x : \phi_1 \vdash t_1 : \psi} \\ \frac{\Gamma \vdash \phi_2 : *_P}{\Gamma \vdash inl(t) : \phi_1 + \phi_2} & \frac{\Gamma \vdash t : \phi_1 + \phi_2}{\Gamma \vdash inr(t) : \phi_1 + \phi_2} & \frac{\Gamma \vdash t : \phi_1 + \phi_2}{\Gamma \vdash case \ t \ of \ x.t_1, x.t_2 : \psi} \\ \end{array}$$

• The reduction rules:

$$\begin{array}{ccccc} (\Lambda X: *_p.t)[\phi] & \leadsto & [\phi/X]t \\ (\lambda x: \phi.t)t' & \leadsto & [t'/x]t \\ \text{case } \textit{inl}(t) \text{ of } x.t_1, x.t_2 & \leadsto & [t/x]t_1 \\ \text{case } \textit{inr}(t) \text{ of } x.t_1, x.t_2 & \leadsto & [t/x]t_2 \end{array}$$

Commuting Conversions:

(case
$$t$$
 of $x.t_1,x.t_2$) t'
 $ightharpoonup \text{case } t$ of $x.(t_1 \ t'),x.(t_2 \ t')$

(case t of $x.t_1,x.t_2$)[ϕ]

 $ightharpoonup \text{(case } t$ of $x.(t_1[\phi]),x.(t_2[\phi])$

case (case t of $x.t_1,x.t_2$) of $y.s_1,y.s_2$
 $ightharpoonup \text{case } t$ of $x.(\text{case } t_1 \text{ of } y.s_1,y.s_2),$
 $x.(\text{case } t_1 \text{ of } y.s_1,y.s_2)$

□ ▶ ◀ 를 ▶ ◀ 를 ▶ ♥) Q (*)

Stratified System F^+ (SSF $^+$)

• The reduction rules:

Commuting Conversions:

```
Structural redex
(case \ t \ of \ x.t_1, x.t_2) \ t'
\rightsquigarrow case \ t \ of \ x.(t_1 \ t'), x.(t_2 \ t')
(case \ t \ of \ x.t_1, x.t_2)[\phi]
\rightsquigarrow (case \ t \ of \ x.(t_1[\phi]), x.(t_2[\phi])
case \ (case \ t \ of \ x.t_1, x.t_2) \ of \ y.s_1, y.s_2
\rightsquigarrow case \ t \ of \ x.(case \ t_1 \ of \ y.s_1, y.s_2),
x.(case \ t_1 \ of \ y.s_1, y.s_2)
```

= ▶ ◀ = ▶ = ♥) ℚ (♥

Well-founded ordering on types

Definition (well-founded ordering on types)

The ordering $>_{\Gamma}$ is defined as the least relation satisfying the universal closures of the following formulas:

$$\begin{array}{lll} \phi_1 \rightarrow \phi_2 & >_{\Gamma} & \phi_1 \\ \phi_1 \rightarrow \phi_2 & >_{\Gamma} & \phi_2 \\ \phi_1 + \phi_2 & >_{\Gamma} & \phi_1 \\ \phi_1 + \phi_2 & >_{\Gamma} & \phi_2 \\ \forall X: *_{I}.\phi & >_{\Gamma} & [\phi'/X]\phi \text{ where } \Gamma \vdash \phi': *_{I}. \end{array}$$

Theorem ($>_{\Gamma}$ is well-founded)

The ordering $>_{\Gamma}$ is well-founded on types ϕ such that $\Gamma \vdash \phi : *_{I}$ for some I.

Hereditary substitution function [Watkins et al., 2004]

- Syntax: $[t/x]^{\phi}t' = t''$.
- Like ordinary capture avoiding substitution.
- Except, if the substitution introduces a redex, then that redex is recursively reduced.
 - Example: $[(\lambda z : b.z)/x]^{b \to b}(x y) (\rightsquigarrow (\lambda z : b.z)y \rightsquigarrow [y/z]^b z) = y.$

The hereditary substitution function for SSF⁺

$$ctype_{\phi}(x,x) = \phi$$

$$ctype_{\phi}(x, t_1 \ t_2) = \phi''$$

Where $ctype_{\phi}(x, t_1) = \phi' \rightarrow \phi''$.

$$ctype_{\phi}(x, t[\phi']) = [\phi'/X]\phi''$$

Where $ctype_{\phi}(x, t) = \forall X : *_{I}.\phi''.$

Lemma (Properties of $ctype_{\phi}$)

If $\Gamma, x : \phi, \Gamma' \vdash t : \phi'$ and $ctype_{\phi}(x, t) = \phi''$ then $head(t) = x, \phi' \equiv \phi''$, and $\phi' \leq_{\Gamma} \phi$.

The hereditary substitution function for SSF⁺

 $app_{\phi} t_1 t_2 = t_1 t_2$ Where t_1 is not a λ -abstraction or a case construct.

$$app_{\phi} (\lambda x : \phi'.t_1) t_2 = [t_2/x]^{\phi'} t_1$$

 $app_{\phi} (case t_0 \text{ of } x.t_1,x.t_2) t = case t_0 \text{ of } x.(app_{\phi} t_1 t),x.(app_{\phi} t_2 t)$

 $rcase_{\phi} t_0 y t_1 t_2 = case t_0 of y.t_1, y.t_2$ Where t_0 is not an inject-left or an inject-right term or a case construct.

$$rcase_{\phi} inl(t') \ y \ t_1 \ t_2 = [t'/y]^{\phi_1} \ t_1$$

 $rcase_{\phi} inr(t') \ y \ t_1 \ t_2 = [t'/y]^{\phi_2} \ t_2$

$$rcase_{\phi}$$
 (case t'_0 of $x.t'_1, x.t'_2$) $y \ t_1 \ t_2 =$ case t'_0 of $x.(rcase_{\phi} \ t'_1 \ y \ t_1 \ t_2), x.(rcase_{\phi} \ t'_2 \ y \ t_1 \ t_2)$

Harley Fades

$$[t/x]^{\phi}x=t$$

$$[t/x]^{\phi}y = y$$

Where y is a variable distinct from x.

$$[t/x]^{\phi}(\lambda y:\phi'.t')=\lambda y:\phi'.([t/x]^{\phi}t')$$

$$[t/x]^{\phi}(\Lambda X:*_{I}.t')=\Lambda X:*_{I}.([t/x]^{\phi}t')$$

$$[t/x]^{\phi} inr(t') = inr([t/x]^{\phi}t')$$

$$[t/x]^{\phi} \operatorname{inl}(t') = \operatorname{inl}([t/x]^{\phi} t')$$

- $[t/x]^{\phi}(t_1 \ t_2) = ([t/x]^{\phi}t_1) \ ([t/x]^{\phi}t_2)$ Where $([t/x]^{\phi}t_1)$ is not a λ -abstraction or a case construct, or both $([t/x]^{\phi}t_1)$ and t_1 are λ -abstractions or case constructs, or $ctype_{\phi}(x,t_1)$ is undefined.
- $[t/x]^{\phi}(t_1 \ t_2) = [([t/x]^{\phi}t_2)/y]^{\phi''}s_1'$ Where $([t/x]^{\phi}t_1) \equiv \lambda y : \phi''.s_1'$ for some y, s_1' , and ϕ'' and $ctype_{\phi}(x, t_1) = \phi'' \rightarrow \phi'$.
- $[t/x]^{\phi}(t_1\ t_2)=$ case w of $y.(app_{\phi}\ r\ ([t/x]^{\phi}t_2)), y.(app_{\phi}\ s\ ([t/x]^{\phi}t_2))$ Where $[t/x]^{\phi}t_1\equiv$ case w of y.r,y.s for some terms $w,\ r,\ s$ and variable y, and $ctype_{\phi}(x,t_1)=\phi''\to\phi'.$
- $[t/x]^{\phi}(t'[\phi']) = ([t/x]^{\phi}t')[\phi']$ Where $[t/x]^{\phi}t'$ is not a type abstraction or t' and $[t/x]^{\phi}t'$ are type abstractions.
- $[t/x]^{\phi}(t'[\phi']) = [\phi'/X]s'_1$ Where $[t/x]^{\phi}t' \equiv \Lambda X : *_l.s'_1$, for some X, s'_1 and $\Gamma \vdash \phi' : *_q$, such that, q < l and $ctype_{\phi}(x,t') = \forall X : *_l.\phi''$.

(a) → 4回 > 4 = > 4 = > 1 = · 이익(

Harley Fades

```
[t/x]^{\phi}(case t_0 of y.t_1,y.t_2) = case ([t/x]^{\phi}t_0) of y.([t/x]^{\phi}t_1),y.([t/x]^{\phi}t_2)
```

Where $([t/x]^{\phi}t_0)$ is not an inject-left or an inject-right term or a case construct, or $([t/x]^{\phi}t_0)$ and t_0 are both inject-left or inject-right terms or case constructs, or $ctype_{\phi}(x,t_0)$ is undefined.

$$[t/x]^{\phi}$$
(case t_0 of $y.t_1,y.t_2$) = $rcase_{\phi}$ ($[t/x]^{\phi}t_0$) y ($[t/x]^{\phi}t_1$) ($[t/x]^{\phi}t_2$)
Where ($[t/x]^{\phi}t_0$) is an inject-left or an inject-right term or a case construct and $ctype_{\phi}(x,t_0) = \phi_1 + \phi_2$.

The *ctype*₀ properties

Lemma (Properties of *ctype*_φ)

- i. If $\Gamma, x : \phi, \Gamma' \vdash t_1 \ t_2 : \phi', \Gamma \vdash t : \phi, [t/x]^{\phi} t_1 = \lambda y : \phi_1.q$, and t_1 is not then there exists a type ψ such that $\operatorname{ctype}_{\phi}(x, t_1) = \psi$.
- ii. If Γ , χ : ϕ , $\Gamma' \vdash t_1$ t_2 : ϕ' , $\Gamma \vdash t$: ϕ , $[t/\chi]^{\phi}t_1 = case t'_0$ of γ . t'_1 , γ . t'_2 , and t_1 is not then there exists a type ψ such that $\operatorname{ctype}_{\phi}(x,t_1) = \psi$.
- iii. If $\Gamma, x : \phi, \Gamma' \vdash t'[\phi''] : \phi', \Gamma \vdash t : \phi, [t/x]^{\phi}t' = \Lambda X : *_{l}t''$, and t' is not then there exists a type ψ such that $\operatorname{ctype}_{\phi}(x,t') = \psi$.
- iv. If $\Gamma, x : \phi, \Gamma' \vdash case t_0 \text{ of } v.t_1.v.t_2 : \phi', \Gamma \vdash t : \phi$. $[t/x]^{\phi}t_0 = case t'_0$ of $z.t'_1,z.t'_2$, and t_0 is not then there exists a type ψ such that $ctype_{\phi}(x,t_0)=\psi$.
- v. If $\Gamma, x : \phi, \Gamma' \vdash case t_0$ of $y.t_1, y.t_2 : \phi', \Gamma \vdash t : \phi, [t/x]^{\phi}t_0 = inl(t')$, and t_0 is not then there exists a type ψ such that $\operatorname{ctype}_{\phi}(x,t_0) = \psi$.
- vi. If $\Gamma, x : \phi, \Gamma' \vdash case t_0$ of $y.t_1, y.t_2 : \phi', \Gamma \vdash t : \phi, [t/x]^{\phi}t_0 = inr(t')$, and t_0 is not then there exists a type ψ such that $\operatorname{ctype}_{\phi}(x,t_0)=\psi$.

Harley Fades

Properties of the hereditary substitution function

Lemma (Total and Type Preserving)

Suppose $\Gamma \vdash t : \phi$ and $\Gamma, x : \phi, \Gamma' \vdash t' : \phi'$. Then there exists a term t'' such that $[t/x]^{\phi}t' = t''$ and $\Gamma, \Gamma' \vdash t'' : \phi'$.

Lemma (Redex Preserving)

If $\Gamma \vdash t : \phi$, Γ , $x : \phi$, $\Gamma' \vdash t' : \phi'$ then $|rset(t', t)| \ge |rset([t/x]^{\phi}t')|$.

Examples: rset and commuting conversions

 Structural redexes are not preserved by the hereditary substitution function in general.

```
Let
        t \equiv inI(a), such that a : \phi_1 \vdash t : \phi_1 + \phi_2 and
        t' \equiv \text{case (case } x \text{ of } z.z,z.z) \text{ of } y.y,y.y.
So
       [t/x]^{\phi_1 + \phi_2} t' =
       case ([t/x]^{\phi_1+\phi_2} (case x of z.z,z.z)) of y.([t/x]^{\phi_1+\phi_2}y),y.([t/x]^{\phi_1+\phi_2}y).
Now
       [t/x]^{\phi_1+\phi_2} (case x of z.z,z.z) =
       rcase_{\phi_1+\phi_2} [t/x]^{\phi_1+\phi_2} x [t/x]^{\phi_1+\phi_2} z [t/x]^{\phi_1+\phi_2} z.
because
       [t/x]^{\phi_1+\phi_2}x = inl(a), x is not an inject-left term, and
       ctype_{\phi_1+\phi_2}(x,x) = \phi_1 + \phi_2.
Finally,
       [t/x]^{\phi_1+\phi_2} (case x of z.z,z.z) = [a/z]^{\phi_1}z = a, which implies,
       [t/x]^{\phi_1 + \phi_2} t' = \text{case } a \text{ of } v.v.v.v.
```

[t/x] t = base a or y.y.y.y.

Harley Fades

Properties of the hereditary substitution function

Lemma (Normality Preserving)

If $\Gamma \vdash n : \phi$ and $\Gamma, x : \phi' \vdash n' : \phi'$ then there exists a normal term n'' such that $[n/x]^{\phi}n' = n''$.

Lemma (Soundness with Respect to Reduction)

If $\Gamma \vdash t : \phi$ and $\Gamma, x : \phi, \Gamma' \vdash t' : \phi'$ then $[t/x]t' \rightsquigarrow^* [t/x]^{\phi}t'$.

Concluding normalization

Definition

$$n \in \llbracket \phi \rrbracket_{\Gamma} \iff \Gamma \vdash n : \phi.$$

Lemma (Substitution for the Interpretation of Types)

If
$$n' \in \llbracket \phi' \rrbracket_{\Gamma, x: \phi, \Gamma'}$$
, $n \in \llbracket \phi \rrbracket_{\Gamma}$, then $[n/x]^{\phi} n' \in \llbracket \phi' \rrbracket_{\Gamma, \Gamma'}$.

Proof.

By Totality we know there exists a term \hat{n} such that $[n/x]^{\phi}n' = \hat{n}$ and $\Gamma, \Gamma' \vdash \hat{n} : \phi'$ and by Normality Preservation \hat{n} is normal. Therefore, $[n/x]^{\phi}n' = \hat{n} \in [\![\phi']\!]_{\Gamma,\Gamma'}$.

Concluding normalization

Theorem (Type Soundness)

If $\Gamma \vdash t : \phi$ then $t \in \llbracket \phi \rrbracket_{\Gamma}$.

Corollary (Normalization)

If $\Gamma \vdash t : \phi$ then $t \leadsto^! n$.

Concluding remarks

- We have analyzed several systems.
 - Simply Typed λ-Calculus (STLC)
 - Simply Typed λ-Calculus⁼
 - An extension of STLC with a primitive notion of equality between types.
 - Stratified System F (SSF)
 - Stratified System F⁺
 - An extension of SSF with sum types and commuting conversions.
 - Dependent Stratified System F
 - An extension of SSF with dependent function types and a primitive notion of equality between terms.
 - Stratified System $F\omega$
 - An extension of SSF with type-level computation.
- Future work.
 - Extend to higher ordinals. Goal: System T.
- Thank you all of you for listening.

