On the Lambek Calculus with an Exchange Modality

Jiaming Jiang1, Harley Eades III2, Valeria de Paiva3

1North Carolina State University; 2Augusta University; 3Nuance Communications
Linearity and Non-Linearity

- Girard bridged linearity with non-linearity via $!A$.

- This modality isolates the structural rules:

\[
\begin{align*}
\Gamma_1, \Gamma_2 \vdash B & \quad \Gamma_1, !A, !A, \Gamma_2 \vdash B \\
\frac{\Gamma_1, \Gamma_2 \vdash B}{\Gamma_1, !A, \Gamma_2} & \quad \frac{\Gamma_1, !A, !A, \Gamma_2 \vdash B}{\Gamma_1, !A, \Gamma_2}
\end{align*}
\]

- Linear Logic = linearity + of-course
Linearity and Non-Linearity

Linear Logic takes for granted the structural rule:

\[
\frac{\Gamma_1, A, B, \Gamma_2 \vdash C}{\Gamma_1, B, A, \Gamma_2 \vdash C} \quad \text{Ex}
\]
Lambek Calculus

- Lambek invented what we call the Lambek Calculus to give a mathematical semantics to sentence structure.

- Lambek Calculus = linearity - exchange
 - Non-commutative tensor: $A \triangleright B$
 - Non-commutative implications: $[[A \prec B]]$ and $[[A \rightarrow B]]$

- No modalities

- Applications
Lambek Calculus

Question posed by computational linguists:
Can we add a modality to the Lambek Calculus that does for exchange what of-course does for weakening and contraction?
Motivation

In process calculi, to model sequential composition of processes:

\[A \otimes B \]
- Commutative tensor product
- Processes \(A \) and \(B \) run in parallel

\[A \triangleright B \]
- Non-commutative tensor product
- Process \(A \) runs first, then process \(B \)
Basic Approach

Abstract Benton’s Linear/Non-Linear (LNL) model:
- Remove the exchange structural rule: implicit in $\Phi, \Psi; \Gamma, \Delta$
- Two logics:
 - Intuitionistic linear logic
 - Lambek Calculus
Linear/Non-Linear Model

A symmetric monoidal adjunction $F \dashv G$:

- Counit: $\varepsilon : FG \to id_C$
- Unit: $\eta : id_L \to GF$
Linear/Non-Linear Model

A symmetric monoidal adjunction $F \dashv G$:

- Countit: $\varepsilon : FG \to id_C$
- Unit: $\eta : id_L \to GF$

- Monad ($GF, \eta, \mu = G\varepsilon_F$) on the CCC: strong and commutative
- Comonad ($FG, \varepsilon, \delta = F\eta_G$) on the SMCC: symmetric monoidal
- Of-course modality: $! = FG$
Commutative/Non-Commutative (CNC) Model
Commutative/Non-Commutative (CNC) Model

A monoidal adjunction $F \dashv G$:

- **Counit:** $\varepsilon : FG \to id_C$
- **Unit:** $\eta : id_L \to GF$

\mathcal{C}: Symmetric Monoidal Closed Category

\mathcal{L}: Lambek Category

\Rightarrow: $\mathcal{L}FG$ is symmetric monoidal
Commutative/Non-Commutative (CNC) Model

A monoidal adjunction $F \dashv G$:

- **Counit:** $\varepsilon : FG \to id_C$
- **Unit:** $\eta : id_L \to GF$

Monad $(GF, \eta, \mu = G\varepsilon_F)$ on the SMCC: strong but non-commutative

Comonad $(FG, \varepsilon, \delta = F\eta_G)$ on the Lambek category: monoidal

Exchange: a natural transformation $ex^{FG} : A \triangleright B \to B \triangleright A$ in the co-Eilenberg-Moore category \mathcal{L}^{FG} of the comonad implies \mathcal{L}^{FG} is symmetric monoidal
CNC Logic

- Left: intuitionistic linear logic
- Right: mixed commutative/non-commutative Lambek calculus
CNC Logic: Notation

Intuitionistic Linear Logic

\(\mathcal{C} \)-Types: \(W, X, Y, Z \)

\(\mathcal{C} \)-Terms: \(t \)

\(\mathcal{C} \)-Contexts: \(\Phi, \Psi \)

\(\mathcal{C} \)-Typing Judgment: \(\Phi, \Psi \vdash_{\mathcal{C}} t : X \)

Lambek Calculus

\(\mathcal{L} \)-Types: \(A, B, C, D \)

\(\mathcal{L} \)-Terms: \(s \)

\(\mathcal{L} \)-Contexts: \(\Gamma, \Delta \)

\(\mathcal{L} \)-Typing Judgment: \(\Gamma; \Delta \vdash_{\mathcal{L}} s : A \)
CNC Logic: Example Typing Rules

Exchange rules:

\[
\frac{\Phi, x : X, y : Y, \Psi \vdash_C t : Z}{\Phi, z : Y, w : X, \Psi \vdash_C \text{ex } w, z \text{ with } x, y \text{ in } t : Z} \quad \text{\(C\)-ex}
\]

\[
\frac{\Gamma; x : X; y : Y; \Delta \vdash_L s : A}{\Gamma; z : Y; w : X; \Delta \vdash_L \text{ex } w, z \text{ with } x, y \text{ in } s : A} \quad \text{\(L\)-ex}
\]
CNC Logic: Example Typing Rules

Functor rules for G:

\[\Phi \vdash _{\mathcal{L}} s : A \quad \Phi \vdash _{\mathcal{C}} G s : GA \quad \text{C-G}_I \]

\[\Phi \vdash _{\mathcal{C}} t : GA \quad \Phi \vdash _{\mathcal{L}} \text{derelict } t : A \quad \text{C-G}_E \]
CNC Logic: Example Typing Rules

Functor rules for G:

\[\begin{align*}
\Phi \vdash \ell s & : A \\
\Phi \vdash \ell Gs & : GA \\
\Phi \vdash \ell \text{derelict} t & : A
\end{align*} \]

Functor rules for F:

\[\begin{align*}
\Phi \vdash \ell t & : X \\
\Phi \vdash \ell Ft & : FX \\
\Gamma \vdash \ell s_1 & : FX \\
\Delta_1 x & : X; \Delta_2 \vdash \ell s_2 & : A
\end{align*} \]

\[\Delta_1; \Gamma; \Delta_2 \vdash \ell \text{let} s_1 : FX \text{ be } Fx \text{ in } s_2 : A \]
CNC Logic: Other Results

- β-reductions: one step β-reduction rules
- Commuting conversions
- Cut elimination
- Equivalence between sequent calculus and natural deduction
- Strong normalization via a translation to LNL logic
- A concrete model in dialectica categories
Conclusion

- Commutative/Non-commutative Logic:
 - Left: intuitionistic linear logic
 - Right: Lambek calculus
- Categorical model: a monoidal adjunction
 - Left: symmetric monoidal closed category
 - Right: Lambek category

Exchange Natural Transformation

\[\text{ex}^{FG} : A \triangleright B \rightarrow B \triangleright A \text{ in the co-Eilenberg-Moore category } \mathcal{L}^{FG} \text{ of the comonad on the Lambek category} \]